

$v_{2} \downarrow v_{3} \qquad \text{while } (Q \neq \emptyset) \{ v_{i} \leftarrow \text{``any element from } Q^{``}; \\ Q \leftarrow Q \setminus \{v_{i}\}; \\ \text{for each } v_{j} \text{``such that''} (v_{i}, v_{j}) \in E \{ x_{j} \leftarrow \max(x_{j}, x_{i} + d_{ij}); \\ p_{j} \leftarrow p_{j} - 1; \\ \text{if } (p_{j} \leq 0) \\ Q \leftarrow Q \cup \{v_{j}\}; \\ \} \end{cases}$										
Q	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> 5	<i>x</i> ₁	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅
"notinitialized"	1	2	1	2	1	0	0	0	0	0
{v ₀ }	0	1	1	2	1	1	5	0	0	0
{v ₁ }	0	0	1	2	0	1	5	0	0	3
$\{v_2, v_5\}$	0	0	0	1	0	1	5	6	6	3
$\{v_3, v_5\}$	0	0	0	1	0	1	5	6	6	3
$\{v_5\}$	0	0	0	0	0	1	5	6	7	3
$\{v_4\}$	0	0	0	0	0	1	5	6	7	3
ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs 3/6/2009 22										

The Liao-Wong Algorithm (2)							
$count \leftarrow 0;$ for $(i \leftarrow 1; i \le n; i \leftarrow i + 1)$ $x_i \leftarrow -\infty;$ $x_0 \leftarrow 0;$							
do { flag \leftarrow 0; longest-path(G_f); for each $(v_i, v_j) \in E_b$ if $(x_j < x_i + d_{ij})$ { $x_j \leftarrow x_i + d_{ij}$; // backward edge reduces distance flag \leftarrow 1; // not yet converged } count \leftarrow count +1; if (count > $ E_b $ && flag) error("positi ve cycle") } while (flag); // while not converged							
ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs	3/6/2009	26					

