
1

3/6/2009 1ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Chapter 6

Layout Compaction

3/6/2009 2ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Design Rules

� The fabrication process will suffer from tolerances
� Chip features will have a practical minimum size to allow

them to be fabricated reliably enough (with high en ough
yield)

� This is captured into a set of precise Design Rules
� Modern processes have terribly complex set of desig n rules

as a compromise between flexibility and manufacturability

http://en.wikipedia.org/wiki/Design_rule_checking

2

3/6/2009 3ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Design Rules
Design rules: restrictions on
the mask patterns to increase
the probability of successful
fabrication.

(a)

(b)

(c)

(e)

(d)

� minimum-width rules (a)
� minimum-separation rules (b, c, d)
� minimum-overlap rules (e)

Patterns and design rules are
expressed in either nanometers
or integer multiples of ‘gridsize’
λλλλ. The types of the most common
design rules:Compromise between

� Density
� Yield
� Ease of use

3/6/2009 4ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

λ-based Transistor Rules

2

3

1

3 2

5

� Illustration only

3

3/6/2009 5ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

More DR Examples (Intra-layer)

Intra-layer design rules: minimum dimensions and sp acings

3/6/2009 6ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Vias & Contacts.

4

3/6/2009 7ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Symbolic Layout

� Single symbols are used to represent
elements located in several layers, e.g.
transistors, contact cuts.

� The length , width or layer of a wire or other
layout element might be left unspecified.

� Mask layers not directly related to the
functionality of the circuit do not need to be
specified, e.g. n-well, p-well.

A layout is symbolic when not all mask patterns
have full specification:

3/6/2009 8ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Symbolic Layout / Stick diagrams

� A stick diagram is a cartoon of a layout.
� Does show components/vias but only relative placement .
� Does not show exact placement , transistor sizes, wire

lengths, wire widths, tub boundaries, some special
components.

Metal 3

metal 2

metal 1

poly

n-diff

p-diff

5

3/6/2009 9ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Invertor Schematic, Stick Diagram, Layout.

VDD

in

VSS

out

VDD

VSS

In Out

VDD

OutIn

VSS

3/6/2009 10ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Compaction and its Applications

A compaction program or compactor generates layout at the
mask level. It attempts to make the layout as dense as possible .

Applications of compaction:

� Area minimization : removing redundant space in
layout at the mask level.

� Layout compilation : generation of mask-level
layout from symbolic layout.

� Redesign : automatic removal of design-rule
violations.

� Rescaling : converting mask-level layout from
one technology to another.

6

3/6/2009 11ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Aspects of Compaction

Dimension:

Complexity:

� 1-dimensional (1D) : layout elements only move or
shrink in one dimension (x or y). Often sequentiall y
performed first in the x-dimension and then in the
y-dimension (or vice versa).

� 2-dimensional (2D) : layout elements move and
shrink simultaneously in two dimensions.

� 1D-compaction can be done efficiently ;
2D-compaction is NP-hard .

3/6/2009 12ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

1D Compaction: X Followed by Y

ABC

HI

D

GFE

(a) (b)

ABC

HI

D

GFE

(c)

A

B

C

HI

D

GFE

7

3/6/2009 13ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

1D Compaction: X Followed by Y

A

B

C

H

I

D

GFE

(d)

ABC

HI

D

GFE

(a)

A

B

C

H

I

D

GFE

(e)

3/6/2009 14ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

2D Compaction

ABC

HI

D

GFE

(a)

ABC

HID

GFE

(f)

8

3/6/2009 15ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Comparison

ABC

HID

GFE

(f)

A

B

C

H

I

D

GFE

(e)

(c)

A

B

C

HI

D

GFE

ABC

HI

D

GFE

(a)

x then yorig

y then x 2D

3/6/2009 16ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Inequalities for Distance

Constraints

For example:

x1 x2

x3 x4x5 x6

x2 −−−− x1 ≥≥≥≥ a

x3 −−−− x2 ≥≥≥≥ b

x3 −−−− x6 ≥≥≥≥ b

Minimum-distance design
rules can be expressed as
inequalities .

9

3/6/2009 17ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

The Constraint Graph

The inequalities can be used to construct a constraint graph G(V, E) :

v3

v1 v2
v4v5 v6

a

a

ab

bv0

0

0

� If all the inequalities express
minimum-distance constraints,
the graph is acyclic. It is a DAG,
a directed acyclic graph .

� There is a vertex vi for each variable xi.

� For each inequality of the form xj −−−− xi ≥≥≥≥ dij, there is an edge
(vi, vj) with weight dij.

� There is an extra source vertex , v0; it is located at x ==== 0; all
other vertices are at its right.

3/6/2009 18ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

The Constraint Graph

v3

v1 v2
v4v5 v6

a

a

ab

bv0

0

0

x1 x2

x3 x4x5 x6

Example rules
� All widths ≥≥≥≥ a
� All spacings ≥≥≥≥ b

10

3/6/2009 19ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Maximum-Distance Constraints

Sometimes the distance of
layout elements is bounded
by a maximum, e.g. when
the user wants a maximum
wire width.

� A maximum distance
constraint gives an inequality
of the form:

xj −−−− xi ≤≤≤≤ cij

⇔⇔⇔⇔

xi −−−− xj ≥≥≥≥ −−−− cij.

� Consequence for the
constraint graph: backward
edge

(vj, vi) with weight dji ==== −−−− cij.
The graph is not acyclic
anymore.

3/6/2009 20ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Longest Path Problem

� Given graph with weighted edges, assign positions t o
nodes that is consistent with all the edges

v3

v1

v2

v4

v5

v0
1

5

2

2

1

1

4

0

3

5

6

1

7

11

3/6/2009 21ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Longest-Path Algorithm for DAGs

main ()

for (i 0; i n; i i 1)
xi 0;

longest-path(G);

longest-path(G)

for (i 1; i n; i i 1)
pi "in-degree of i ";

Q 0 ;
while (Q)

i "any element from Q";
Q Q i ;
for each j "such that" i j E

x j max x j xi di j ;
p j p j 1;
if (p j 0)

Q Q j ;

// for each outgoing edge

// if all incoming edges have been processed
// can process its outgoing edges

// set max distance for x j

3/6/2009 22ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

v3

v1

v2

v4

v5

v0
1

5

2

2

1

1

4

Q p1 p2 p3 p4 p5 x1 x2 x3 x4 x5
"notinitialized" 1 2 1 2 1 0 0 0 0 0

0 0 1 1 2 1 1 5 0 0 0
1 0 0 1 2 0 1 5 0 0 3

2 5 0 0 0 1 0 1 5 6 6 3
3 5 0 0 0 1 0 1 5 6 6 3

5 0 0 0 0 0 1 5 6 7 3
4 0 0 0 0 0 1 5 6 7 3

12

3/6/2009 23ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Longest-Path Algorithm for DAGs

main ()

for (i 0; i n; i i 1)
xi 0;

longest-path(G);

longest-path(G)

for (i 1; i n; i i 1)
pi "in-degree of i ";

Q 0 ;
while (Q)

i "any element from Q";
Q Q i ;
for each j "such that" i j E

x j max x j xi di j ;
p j p j 1;
if (p j 0)

Q Q j ;

Q: What is the worst-case time
complexity of this algorithm?
A: O(|E|)

3/6/2009 24ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Longest-Paths in Cyclic Graphs

Constraint-graph compaction with maximum-distance
constraints requires solving the longest-path probl em in
cyclic graphs .

Two cases are distinguished:

� There are positive cycles
⇒⇒⇒⇒ the problem is NP-hard ;
however, a positive cycle
corresponds to a set of
conflicting constraints.
The best to be done is to
detect the cycles.

� All cycles are negative : polynomial-time algorithms exist.

13

3/6/2009 25ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

The Liao-Wong Algorithm (1)

Main ideas :

� Split the edge set E of the constraint graph into two subsets :

� forward edges Ef :related to minimum-distance constraints,

� backward edges Eb:related to maximum-distance constraints.

� The graph G(V, Ef) is acyclic ; the minimum distance for each
vertex can be computed with the procedure ‘‘ longest-path ’’.

� Repeat until convergence:

� update minimum distances by processing the edges fr om Eb.

� call ‘‘longest-path’’ for G(V, Ef).

3/6/2009 26ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

The Liao-Wong Algorithm (2)

count 0;
for (i 1; i n; i i 1)

xi ;
x0 0;

do flag 0;
longest-path(G f);
for each i j Eb

if (x j xi di j)
x j xi di j ;
flag 1;

count count +1;
if (count Eb && flag)

error("positi ve cycle")

while (flag); // while not converged

// not yet converged
// backward edge reduces distance

14

3/6/2009 27ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

v3

v1

v2

v4

v5

v0
1

5

2

2

1

1

4

-3

-4

-1
Step x1 x2 x3 x4 x5

Initialize
Forward1 1 5 6 7 3
Backward1 2 5 6 7 3
Forward2 2 5 6 8 4
Backward2 2 5 7 8 4
Forward3 2 5 7 8 4
Backward3 2 5 7 8 4

� After first forward iteration, the max-3 constraint between v2

and v1 is violated
� Corrected after first backward iteration
� But then v4 and v5 are too close to v1

� Etc.

The Liao-Wong Algorithm (3).

Q: What is the worst-case
time complexity of this
algorithm?
A: O(|Eb| ×××× |E|).

3/6/2009 28ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

The Bellman-Ford Algorithm (1)

for (i 1; i n; i i 1)
xi ;

x0 0;
count 0;
S1 0 ;
S2 ;
while (count n && S1)

for each i S1
for each j "such that" i j E

if (x j xi di j)
x j xi di j ;
S2 S2 j

S1 S2;
S2 ;
count count + 1;

if (count n)
error("positi ve cycle");

http://en.wikipedia.org/wiki/Bellman-ford

Repeated wavefront propagation

// current wavefront
// wavefront for next iter

// swap wavefront

// counter to detect positive loops

15

3/6/2009 29ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

x1 ���� x2 + (-3)

v3

v1

v2

v4

v5

v0
1

5

2

2

1

1

4

-3

-4

-1

S1 x1 x2 x3 x4 x5

"notinitialized"
0 1 5
1 2 2 5 6 6 3
1 3 4 5 2 5 6 7 4
4 5 2 5 6 8 4
4 2 5 7 8 4
3 2 5 7 8 4

3/6/2009 30ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Longest Path vs Bellman-Ford

Longest Path Bellman-Ford

Kernel of algorithms

O(n ×××× |E|) = O(n3). Worst-case:

Average-case: O(n1.5). (Schiele)

16

3/6/2009 31ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Longest and Shortest Paths

� Longest paths become shortest paths and vice versa
when edge weights are multiplied by –1.

� Situation in DAGs: both the longest and shortest path
problems can be solved in linear time.

� Situation in cyclic directed graphs :

+ All weights are positive : shortest-path problem in P
(Dijkstra), longest-path problem is NP-complete.

+ All weights are negative : longest-path problem in P
(Dijkstra), shortest-path problem is NP-complete.

+ No positive cycles : longest-path problem is in P

+ No negative cycles : shortest-path problem is in P.

+ Otherwise : problem is NP-complete.

3/6/2009 32ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Remarks Constraint-Graph

Compaction

� The algorithms mentioned only compute the left-most
position for each layout element. All elements outs ide
the critical paths also have a right-most position . It is
interesting to find the best position within this i nterval
with respect to some cost function.

� The quality of the layout
can further be improved by
automatic jog insertion .

� A method to reduce complexity is hierarchical compaction .
(a) (b)

17

3/6/2009 33ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Constraint Generation

� The constraint graph is not directly available afte r
layout design. It must be computed.

� The set of constraints should be irredundant (why?)
and generated efficiently.

� Doenhardt and Lengauer have proposed a method for
irredundant constraint generation with complexity O(n log n).

A

B
C

Redundant constraint

3/6/2009 34ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Virtual Grid Compaction

Features:

� 1D method.

� All layout elements are associated to horizontal an d vertical
grid lines.

� Initially the distance between grid lines is unspec ified.

� The distance between two subsequent grid lines is
computed by taking the maximum separation imposed b y
pairs of elements on different grid lines.

� Disadvantage: rigid as elements initially located o n one line
always remain aligned.

