

Design Rules

■ The fabrication process will suffer from tolerances

- Chip features will have a practical minimum size to allow them to be fabricated reliably enough (with high enough yield)
- This is captured into a set of precise Design Rules
- Modern processes have terribly complex set of design rules as a compromise between flexibility and manufacturability
http://en.wikipedia.org/wiki/Design_rule_checking

Design Rules

Design rules: restrictions on the mask patterns to increase the probability of successful fabrication.
Compromise between

- Density
\square Yield
■ Ease of use

Patterns and design rules are expressed in either nanometers or integer multiples of 'gridsize' λ. The types of the most common design rules:
■ minimum-width rules (a)
■ minimum-separation rules (b, c, d)
■ minimum-overlap rules (e)

λ-based Transistor Rules

- Illustration only

Intra-layer design rules: minimum dimensions and spacings

Symbolic Layout

A layout is symbolic when not all mask patterns have full specification:

- Single symbols are used to represent elements located in several layers, e.g. transistors, contact cuts.
- The length, width or layer of a wire or other layout element might be left unspecified.
- Mask layers not directly related to the functionality of the circuit do not need to be specified, e.g. n-well, p-well.

Symbolic Layout / Stick diagrams

- A stick diagram is a cartoon of a layout.

■ Does show components/vias but only relative placement.
■ Does not show exact placement, transistor sizes, wire lengths, wire widths, tub boundaries, some special components.

Compaction and its Applications

A compaction program or compactor generates layout at the mask level. It attempts to make the layout as dense as possible.
Applications of compaction:

- Area minimization: removing redundant space in layout at the mask level.
- Layout compilation: generation of mask-level layout from symbolic layout.
- Redesign: automatic removal of design-rule violations.
- Rescaling: converting mask-level layout from one technology to another.

Aspects of Compaction

Dimension:

■ 1-dimensional (1D): layout elements only move or shrink in one dimension (x or y). Often sequentially performed first in the x-dimension and then in the y -dimension (or vice versa).

- 2-dimensional (2D): layout elements move and shrink simultaneously in two dimensions.

Complexity:

- 1D-compaction can be done efficiently; 2D-compaction is NP-hard.

1D Compaction: X Followed by Y

(a)

(c)

Inequalities for Distance Constraints

Minimum-distance design rules can be expressed as inequalities.

For example:

$$
\begin{aligned}
& x_{2}-x_{1} \geq a \\
& x_{3}-x_{2} \geq b \\
& x_{3}-x_{6} \geq b
\end{aligned}
$$

The Constraint Graph

The inequalities can be used to construct a constraint graph $G(V, E)$:

■ There is a vertex $\boldsymbol{v}_{\boldsymbol{i}}$ for each variable $\boldsymbol{x}_{\boldsymbol{i}}$.
■ For each inequality of the form $x_{j}-x_{i} \geq d_{i j}$, there is an edge $\left(v_{i}, v_{j}\right)$ with weight $d_{i j}$.

■ There is an extra source vertex, v_{0}; it is located at $x=0$; all other vertices are at its right.

■ If all the inequalities express minimum-distance constraints, the graph is acyclic. It is a DAG, a directed acyclic graph.

The Constraint Graph

Example rules

- All widths \geq a
- All spacings $\geq b$

Maximum-Distance Constraints

Sometimes the distance of layout elements is bounded by a maximum, e.g. when the user wants a maximum wire width.

- A maximum distance constraint gives an inequality of the form:

$$
\begin{gathered}
x_{j}-x_{i} \leq c_{i j} \\
\Leftrightarrow \\
x_{i}-x_{j} \geq-c_{i j} .
\end{gathered}
$$

■ Consequence for the constraint graph: backward edge

Longest Path Problem

■ Given graph with weighted edges, assign positions to nodes that is consistent with all the edges

Longest-Path Algorithm for DAGs

```
longest-path(G)
{
    for }(i\leftarrow1;i\leqn;i\leftarrowi+1
        pi}\leftarrow "in-degree of vi";
    Q}\leftarrow{\mp@subsup{v}{0}{}}
    while (Q #= \emptyset) {
        main ()
    {
        for }(i\leftarrow0;i\leqn;i\leftarrowi+1
        xi}\leftarrow0
        longest-path(G);
}
            vi}\leftarrow "any element from Q"
            Q}\leftarrowQ\{\mp@subsup{v}{i}{}}
            for each }\mp@subsup{v}{j}{}\mathrm{ "such that" ( }\mp@subsup{v}{i}{},\mp@subsup{v}{j}{})\inE{// for each outgoing edg
                x
                p
                if (\mp@subsup{p}{j}{}\leq0) // if all incoming edges have been processed
                Q}\leftarrowQ\cup{\mp@subsup{v}{j}{}};\quad// can process its outgoing edge
            }
    }
}
```


Longest-Path Algorithm for DAGs

```
longest-path(G)
{
    for (i}\leftarrow1;i\leqn;i\leftarrowi+1
        pi}\leftarrow\mathrm{ "in-degree of }\mp@subsup{v}{i}{}\mathrm{ ";
    Q\leftarrow{\mp@subsup{v}{0}{}};
    while (Q\not=\emptyset) {
        main ()
        {
        for }(i\leftarrow0;i\leqn;i\leftarrowi+1
            xi}\leftarrow0
        longest-path(G);
}
            vi}\leftarrow\mathrm{ "any element from Q";
            Q\leftarrowQ\{\mp@subsup{v}{i}{}};
            for each }\mp@subsup{v}{j}{}\mathrm{ "such that" ( }\mp@subsup{v}{i}{},\mp@subsup{v}{j}{})\inE
            x}<\leftarrow\operatorname{max}(\mp@subsup{x}{j}{},\mp@subsup{x}{i}{}+\mp@subsup{d}{ij}{})
            pj}\leftarrow\mp@subsup{p}{j}{}-1
            if ( }\mp@subsup{p}{j}{}\leq0
                Q\leftarrowQ\cup{\mp@subsup{v}{j}{}};
```

Q: What is the worst-case time complexity of this algorithm?
A: $\boldsymbol{O}(|E|)$

```
        }
    }
}
```


Longest-Paths in Cyclic Graphs

Constraint-graph compaction with maximum-distance constraints requires solving the longest-path problem in cyclic graphs.

Two cases are distinguished:

- There are positive cycles \Rightarrow the problem is NP-hard; however, a positive cycle corresponds to a set of conflicting constraints.
 The best to be done is to
 detect the cycles.

■ All cycles are negative: polynomial-time algorithms exist.

The Liao-Wong Algorithm (1)

Main ideas:

■ Split the edge set E of the constraint graph into two subsets:
■ forward edges E_{f} :related to minimum-distance constraints,
■ backward edges E_{b} :related to maximum-distance constraints.
■ The graph $G\left(V, E_{f}\right)$ is acyclic; the minimum distance for each vertex can be computed with the procedure 'longest-path".

- Repeat until convergence:

■ update minimum distances by processing the edges from E_{b}.
■ call 'longest-path'" for $G\left(V, E_{f}\right)$.

The Liao-Wong Algorithm (2)

```
count \(\leftarrow 0\);
for \((i \leftarrow 1 ; i \leq n ; i \leftarrow i+1)\)
    \(x_{i} \leftarrow-\infty\);
\(x_{0} \leftarrow 0 ;\)
do \(\{\) flag \(\leftarrow 0\);
    longest-path \(\left(G_{f}\right)\);
    for \(\operatorname{each}\left(v_{i}, v_{j}\right) \in E_{b}\)
            if \(\left(x_{j}<x_{i}+d_{i j}\right)\{\)
            \(x_{j} \leftarrow x_{i}+d_{i j} ; / /\) backward edge reduces distance
            flag \(\leftarrow 1\); // not yet converged
        \}
    count \(\leftarrow\) count +1 ;
    if (count \(>\left|E_{b}\right| \& \&\) flag)
            error("positi ve cycle")
\}
while (flag); // while not converged
```


■ After first forward iteration, the max-3 constraint between v_{2} and v_{1} is violated

- Corrected after first backward iteration
- But then v_{4} and v_{5} are too close to v_{1}
- Etc.

ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Q: What is the worst-case time complexity of this algorithm?
A: $O\left(\left|E_{b}\right| \times|E|\right)$.
3/6/2009

The Bellman-Ford Algorithm (1)

Longest Path vs Bellman-Ford

Kernel of algorithms

while $(Q \neq \emptyset)$ \{
$v_{i} \leftarrow$ "any element from Q ";
$Q \leftarrow Q \backslash\left\{v_{i}\right\} ;$
for each v_{j} "such that" $\left(v_{i}, v_{j}\right) \in E\{$
$x_{j} \leftarrow \max \left(x_{j}, x_{i}+d_{i j}\right) ;$
$p_{j} \leftarrow p_{j}-1$;
if $\left(p_{j} \leq 0\right)$
$Q \leftarrow Q \cup\left\{v_{j}\right\} ;$
\}
\}
Longest Path
while (count $\leq n \& \& S_{1} \neq \emptyset$) \{
for each $v_{i} \in S_{1}$
for each v_{j} "such that" $\left(v_{i}, v_{j}\right) \in E$ if $\left(x_{j}<x_{i}+d_{i j}\right)$ \{ $x_{j} \leftarrow x_{i}+d_{i j}$; $S_{2} \leftarrow S_{2} \cup\left\{v_{j}\right\}$
\}
$S_{1} \leftarrow S_{2} ;$
$S_{2} \leftarrow \emptyset ;$
count \leftarrow count +1 ;
\}
Bellman-Ford

Worst-case: $O(n \times|E|)=O\left(n^{3}\right)$.
Average-case: $O\left(n^{1.5}\right)$. (Schiele)

Longest and Shortest Paths

- Longest paths become shortest paths and vice versa when edge weights are multiplied by $\mathbf{- 1}$.
■ Situation in DAGs: both the longest and shortest path problems can be solved in linear time.
- Situation in cyclic directed graphs:
+ All weights are positive: shortest-path problem in \mathbf{P} (Dijkstra), longest-path problem is NP-complete.
+ All weights are negative: longest-path problem in \mathbf{P} (Dijkstra), shortest-path problem is NP-complete.
+ No positive cycles: longest-path problem is in \mathbf{P}
+ No negative cycles: shortest-path problem is in P.
+ Otherwise: problem is NP-complete.

Remarks Constraint-Graph Compaction

■ The algorithms mentioned only compute the left-most position for each layout element. All elements outside the critical paths also have a right-most position. It is interesting to find the best position within this interval with respect to some cost function.

- The quality of the layout can further be improved by automatic jog insertion.

(a)

(b)
- A method to reduce complexity is hierarchical compaction.

Constraint Generation

- The constraint graph is not directly available after layout design. It must be computed.
■ The set of constraints should be irredundant (why?) and generated efficiently.

- Doenhardt and Lengauer have proposed a method for irredundant constraint generation with complexity $O(n \log n)$.

Virtual Grid Compaction

Features:

- 1D method.
- All layout elements are associated to horizontal and vertical grid lines.

■ Initially the distance between grid lines is unspecified.

- The distance between two subsequent grid lines is computed by taking the maximum separation imposed by pairs of elements on different grid lines.

■ Disadvantage: rigid as elements initially located on one line always remain aligned.

