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Learning About the World

select next 
sensing action

Sense/Sample Collect Data

How do we learn about the World?

How can we take advantage of this feedback?
Can we quantify the gains?
Devise practical ways of using this feedback?



Inference of Sparse Signals

Can we reliably detect/identify sparse 
patterns in signals?

• Detect the presence/absence of a sparse signal
• Locate the sparse signal components (support estimation)

Network Anomaly DetectionGene expression



Sparse Signal Models
We are interested in learning about a signal

E.g.:

We consider situations where    is a sparse vector:



Collecting Noisy Observations
Normal Means (uniform coordinate-wise sensing):

Make exactly n measurements, all with the same precision…

Adaptive coordinate-wise sensing:

Precision = SNR control

…subject to a total precision budget



Adaptive vs. Non-Adaptive Sensing
Non-Adaptive sensing:

must be chosen prior to the collection of any 
observations.

Key Idea: allow future sensing location and precision to 
depend on past observations !!!

Adaptive Sensing:

Zehetmayer, Bauer & Posch “Optimized multi-stage designs controlling 
the false discovery or the family-wise error rate”, Statist. Med. 2008Related settings: 
Hao et al, “Drosophila RNAi screen identifies host genes important for 
influenza virus replication” Nature 2008

Our setting is closely related to that of multi-armed bandit problems with 
pure exploration…



Linear Projections/Compressed Sensing

Donoho, “Compressed Sensing,”, IEEE Trans. Info. Th. 2006
Candès, Romberg, Tao, “Stable signal recovery from 
incomplete and inaccurate measurements”, Comm. on Pure 
and Applied Math. 2006.

• This generalizes the previous coordinate-wise sensing model
• Compressive Sensing can naturally deal with sparsity domains 
different than the canonical one



Outline
Coordinate-wise Sensing (Adaptive vs. Non-adaptive)

Compressive Adaptive Sensing
• Statistical guarantees
• Sample-complexity considerations

• Dealing with structured sparsity

For simplicity of presentation consider a slightly simpler signal model:

signal support set

How small can be so that we can still perform reliable 
inference about    ?



Inference Goals

Obviously, the difficulty of the problem depends on the class      
under consideration…

Estimation:

Detection:

(no signal present) (a signal in the class)



Structured and Unstructured Classes



Structured and Unstructured Classes

Structure can be very helpful for non-adaptive sensing, both 
for support estimation or detection:

- Addario-Berry, et al., “On Combinatorial Testing Problems”, AoS 2010
- Arias-Castro, “Searching for a trail of evidence in a maze”, AoS 2008
- Butucea, Ingster, “Detection of a sparse submatrix of a high-
dimensional noisy matrix”, Bernoulli, 2014
- Kolar, et al., “Minimax Localization of Structural Information in 
Large Noisy Matrices”, NIPS 2011



Signal Detection

Sharper bounds exist (e.g., Ingster ’99, Baraud ’02, Donoho and Jin ’04)

• There is a sensing/detection algorithm achieving this bound
• Structural assumptions cannot further improve this result!!



Support Estimation

Can adaptive sensing improve upon non-adaptive sensing?

Similar bounds can be shown for other classes:



Simple Thresholding
A simple sequential thresholding procedure



Simple Thresholding

and so on for T steps… For sparse signals we remove about 
half of the components from further consideration at each step



Simple Thresholding
How much of the precision budget do we use?

What is the expected number of errors we make?

False positives False negatives



Adaptive vs. Non-Adaptive

Can we use these ideas when there is structure?

• Malloy, Nowak. “Sequential Testing for Sparse Recovery,” IT Trans, 2014
• Haupt, C., Nowak, “Distilled Sensing: Adaptive Sensing for Sparse 
Detection and Estimation”, IT Trans, 2011



Idea for a General Procedure

s-sets: the Simple Thresholding/Multiple SPRT approach is a 
coordinate-wise query of all n entries

A general approach for structured cases:

• Devise a noiseless support estimation procedure, making 
the “minimal” number of queries necessary to uniquely identify 
the support (and exploring the combinatorial structure of the 
signal class).

• Robustify the noiseless procedure to be able to deal with 
noisy observations, using SPRTs



Example s-intervals



Upper and Lower Bounds
With careful calibration of the SPRTs one can significantly improve on 
non-adaptive sensing. Matching adaptive sensing lower bounds can 
also be derived (but do require some careful work)

Tánczos, C. “Adaptive Sensing for Estimation of Structured Sparse 
Signals,” in IEEE IT Trans. , 2015



Linear Projections/Compressed Sensing
Instead of point-samples, one can consider the linear projection 
measurements



Detection using Linear Projections

As in the previous setting, structure does not help for detection.

Moreover, we can achieve the above bound using only a non-
adaptive sensing procedure !!!

For estimation the story is different…



Support Estimation with Linear Proj.

(Some) related work –> 

Optimal rate 
(C. ’12)

Arias-Castro, et al., “On the Fundamental Limits of Adaptive Sensing”, 2011
Arias-Castro, Davenport, “Compressive Binary Search”, 2012
C., “Adaptive Sensing Performance lower Bounds for Sparse Signal

Estimation and Testing,” 2012
Balakrishnan, et al., “Recovering block-structured activations using 
compressive measurements,” 2012
Malloy, Nowak, “Near-optimal Adaptive Compressed Sensing”, 2014



Capitalizing on Structural Properties
Same idea as before: alternate between search and refinement 
stages:

• Key fact: compressive sensing leads to a more effective search 
phase, as it can detect weaker signals.



Adaptive Compressed Sensing

Tánczos, C. “Adaptive Compressed Sensing for Estimation of 
Structured Sparse Signals,” IT Trans, 2017

These results characterize the statistical difficulty of the problem, but 
completely disregard sample complexity...



Minimizing Sample Complexity - CASS

Malloy, Nowak, “Near-Optimal Adaptive Compressed Sensing”, IEEE IT, 2014

For the case of s-sparse sets there is a procedure (Compressive 
Adaptive Sense and Search – CASS) attaining the results in the 
previous slide, but using only on the order of ~s log n projections



CASS - Guarantees

The CASS idea of binary bisection can be combined with the search 
and refinement approach and used to deal with structure as well:
Unions of k s-intervals:

search: use CASS to find the “middle” of an interval
refinement: use CASS only “around” each found interval



Adaptive Compressed Sensing

Tánczos, C. “Adaptive Compressed Sensing for Estimation of 
Structured Sparse Signals,” IT Trans, 2017



Numerical ResultsAdaptive Compressive Sensing for Structured Support Recovery
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Figure 3.1: Average normalized Hamming-distance (with SE bands) for the dif-
ferent estimators as a function of the parameter t (the signal strength is t · µlimit

with µlimit defined in (3.9)): the non-adaptive estimator (black); the CASS-based
procedure (blue); the SLRT-based procedure calibrated with µlimit (red); the SLRT-

based procedure calibrated with µ(.95)
limit (green). The number of repetitions is 100 for

each value of t. The vertical black dashed line is at the value t = 1. The horizontal
black dashed line is at the value of � (0.05).

We provide a plot on a wider range of the parameter t to be able to compare

the non-adaptive estimator to the adaptive ones, and a zoom-in of the previous

plot around t = 1 to be able to compare the adaptive sensing estimators. As

expected, the adaptive sensing procedures outperform the non-adaptive one. We

also expect the SLRT-based procedures to reach the level � = 0.05 at t = 1, and

the CASS-based procedure to reach this level somewhat later.

The same comments apply to the performance of the SLRT-based procedures

as in Section 2.6. Note that the CASS-based procedure performs comparably to

the SLRT-based estimators. This illustrates that the constants resulting from the

crude analysis of Section 3.4.1 are indeed very loose.

3.6 Final remarks

In this chapter we have examined the problem of recovering structured support

sets through adaptive compressive measurements. We have seen that by adaptively

122

Even though these procedures (particularly CASS) were designed to 
ensure worst-case guarantees they still seem to have very 
reasonable performance



Remarks
• The submatrix case is more delicate than presented here. 
For non-square matrices one encounters different inference 
regimes, and there are some gaps between upper and lower 
bounds…

• Good lower bounds on the sample complexity of adaptive 
compressive sensing are still needed.

Aksoylar, C., Saligrama, V “Information-theoretic bounds for 
adaptive sparse recovery” (2014)



Final Remarks
• Deriving good sample complexity and performance lower 
bounds for adaptive (compressed) sensing is tricky. A common 
challenge (still open): characterize accurately how information 
contracts when using adaptive sensing…

• There are other interesting settings one can consider:
• Detection of correlations

• Detection of evolving signals

Castro, Savalle, Lugosi, “Detection of Correlations with Adaptive 
Sensing”, in IEEE IT Trans., 2014

Tánczos, C. “Are there needles in a moving haystack? Adaptive 
sensing
for detection of dynamically evolving signals", to appear in Bernoulli

Thank You


