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Motivation 
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Distributed radar 

Microseismic event detection 

Radio astronomy 

Ultrasound imaging 



Problem statement 
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The term “sparse sensing = sampling” has been used earlier: 

     - Sampling sparse signals [Vetterli et al.-2008] 

     - Covariance reconstruction and array processing [Vaidyanathan et al.-2011] 

Design of structured (sparse) space-time samplers 

 or 

sparse sensing design 
 

• T. Blu, P.L. Dragotti, M.Vetterli, P. Marziliano, and L. Coulot. “Sparse sampling of signal innovations,” IEEE Signal Processing 

Magazine, vol. 25, no. 2, pp. 31-40, Mar. 2008. 

• P.P. Vaidyanathan and P. Pal. "Sparse sensing with co-prime samplers and arrays." IEEE Transactions on Signal Processing, vol. 

59, no. 2, pp.  573-586, Feb. 2011. 



Why sparse sensing? 

 Economical constraints (hardware cost) 

  

 Limited physical space 

 

 Limited data storage space 

 

 Reduce communications bandwidth  

 

 Reduce processing overhead  

 

4 



Compressive sensing 

 State-of-the-art tool for sensing cost reduction 

         [Donoho 2006], [Candès 2006] 

 

 

• D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006. 

• E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete 

frequency information,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, feb. 2006. 

 

Random linear projections of Nyquist rate samples 

Sparse signal reconstruction 
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Sparse sensing vs. compressed sensing 

Compressed sensing Sparse sensing 

Sparse signal needed not needed 

Samplers random deterministic, sparse 

Compression robust practical, controllable 

 

Signal processing task  

 

sparse signal reconstruction any statistical inference 
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Candidate measurement set (samples, sensors, etc.): 

 

 

Sparse sensing vector (Boolean):  

Discrete sparse sensing 
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           inference performance metric  

 

     prescribed accuracy  

Design problem 

Select the “best” subset of sensors out of the candidate sensors 

that guarantee a certain desired inference performance. 

Formulation 1 Formulation 2 

sample size 
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Nonconvex Boolean problem 



Solutions to the combinatorial problem 

 Exhaustive search over 

          possible candidates for formulation 1  

          possible candidates for formulation 2 

 

 Branch-and-bound methods 

    [Lawler-Wood-1966], [Nguyen-Miller-1992] 

  long runtimes even for a modest sized problem 

• E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Oper. Res., vol. 14, pp. 699–719, 1966. 

• N. Nguyen and A. Miller, “A review of some exchange algorithms for constructing discrete D-optimal designs,” Comput. Statist. 

Data Anal., vol. 14, pp. 489–498, 1992 

 

Exact solutions: 
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Solutions to the combinatorial problem 

 Convex optimization (polynomial time) 
       [Joshi-Boyd-2009], [Chepuri-Leus-2015] 

  convex relaxation for    

  thresholding, randomization to get back a Boolean solution 

  Semidefinite program (SDP) typically 

• S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462, Feb. 

2009 

• S.P. Chepuri and G. Leus. “Sparsity-Promoting Sensor Selection for Non-linear Measurement Models,” IEEE Trans. on Signal 

Processing, vol. 63, no. 3, pp. 684-698, Feb. 2015.  

Suboptimal solutions: 
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Solutions to the combinatorial problem 

 
 
 
 
 
 
 

 Submodular optimization (linear search) 

 [Krause-Singh-Guestrin-2008], [Ranieri-Chebira-Vetteri-2014] 

  greedy search 

  solution is near optimal 

• A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and 

empirical studies,” J. Machine Learn. Res., vol. 9, pp. 235–284, Feb. 2008. 

• J. Ranieri, A. Chebira, and M. Vetterli, “Near-optimal sensor placement for linear inverse problems,” IEEE Trans. Signal Process., 

vol. 62, no. 5, pp. 1135–1146, Mar. 2014 

 

Suboptimal solutions: 
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Convex optimization 

 Boolean constraint is relaxed to the box constraint 

     (-quasi) norm is relaxed to either    -norm:  

 or a form that is iteratively convex 

Requires       to be convex function  

• E. Candés, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted minimization l1-minimization,” J. Fourier Anal. Appl., vol. 

14, pp. 877–905, 2008. 

[Candés-Wakin-Boyd-2008] 
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Formulation 1 Formulation 2 



Submodular optimization 
Requires       to be submodular monotonically increasing function  

 Define the sampling set: 

 

 

        or 

 

 Set function          is submodular, if 

 

 

 

 

 If           is monotonically increasing, i.e.,  

 
  

13 



Submodular optimization 

Linear search 

Then, greedy algorithm is near-optimal 

63% 

• G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— I,” 

Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978. 

[Nemhauser-Wolsey-Fisher-1978] 
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Sparse sensing for estimation 

 Unknown parameter vector              follows 

 

 

 

 Linear observations with indep. additive Gaussian noise 
                                                                                            [Joshi-Boyd-09] 

 What about more general cases? 

 Exact MSE is hard to optimize and depends on algorithm 

 Use the Cramér-Rao bound as the performance metric 
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Fisher Information matrix (FIM) 

• S. Joshi and S. Boyd, “Sensor Selection via Convex Optimization,” IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 

451–462, Feb. 2009 

 



Statistically independent observations 
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 Independent observations: FIM is additive 

 

 

 Dependent Gaussian observations: 

 

 

 

  

     Use                     with                             to obtain proxy 

 

 

 

This is again additive 

 



        for estimation – scalar measures 

 Prominent scalar measures   

 E-optimality measure (worst case error) 

 

 A-optimality measure (average error) 

 

 D-optimality measure (error volume) 

 

 Frame potential (approx. error) 
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Convex (SDP) 

Convex (SDP) 

Convex 

Submodular 

Submodular 



Sparse sensing for estimation 

Setting Convex Submodular 

Optimization criterion 
Trace of inverse FIM = MSE 

Mimimum eigenvalue FIM 

Logdet of FIM 

Frame potential 

Independent Gaussian 

observations, linear 
SDP using LMI  Greedy method 

Independent 

observations, nonlinear 

SDP 

- One LMI per possible solution 

- Single LMI for Bayesian cost 

Greedy on Bayesian 

cost 

Dependent Gaussian 

observations, linear 
SDP using extended LMI 

Greedy on extended 

Logdet of FIM 

Dependent Gaussian 

observations, nonlinear 

SDP 

- One ext. LMI per possible 

solution 

- Single ext. LMI for Bayesian cost 

Greedy on Bayesian 

extended Logdet of FIM 
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• S.P. Chepuri and G. Leus, “Sparsity-Promoting Sensor Selection for Non-linear Measurement Models,” IEEE Trans. on Signal 

Processing, vol. 63, no. 3, pp. 684-698, Feb. 2015. 

• S. Liu, S.P. Chepuri, M. Fardad, E. Masazade, G. Leus, and P.K. Varshney, “Sensor Selection for Estimation with Correlated 

Measurement Noise,” IEEE Transactions on Signal Processing, Mar. 2016. 

• S. Rao, S.P. Chepuri, and G. Leus, “Greedy Sensor Selection for Non-Linear Models,” In Proc. to the IEEE Workshop on Comp. 

Adv. in Multi-Sensor Adaptive Proc. (CAMSAP 2015), Cancun, Mexico, December 2015. 

 

 

 

 

 

 



Example: RSS target localization 

Out of 80 available access point locations, 8 access points are selected.  
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 Sensors along all edges are not correlated 

 

 

 



Example: RSS target localization 

 Sensors along horizontal edges are equicorrelated (correlation coefficient 0.5) 

 Sensors along vertical edges are not correlated 

 

 

 

Out of 80 available uncorrelated and correlated access point locations,  

14 access points are selected.  
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Sparse sensing for detection 

 Observations follow (binary hypothesis testing) 

 

 

 

 

 Independent Gaussian observations 
               [Cambanis-Masry-83], [Yu-Varshney-97], [Bajovic-Sinopoli-Xavier-11] 

 

 What about more general cases? 

• S. Cambanis and E. Masry, “Sampling designs for the detection of signals in noise,” IEEE Trans. Inf. Theory, vol. 29, no. 1, pp. 

83–104, Jan. 1983. 

• C.-T. Yu and P. K. Varshney, “Sampling design for Gaussian detection problems,” IEEE Trans. Signal Process., vol. 45, no. 9, pp. 

2328–2337, 1997. 

• D. Bajovic, B. Sinopoli, and J. Xavier, “Sensor selection for event detection in wireless sensor networks,” IEEE Trans. Signal 

Process., vol. 59, no. 10, pp. 4938–4953, Oct. 2011. 21 



Sparse sensing for detection 

Neyman Pearson setting  Bayesian setting 

 Exact error probabilities hard to optimize 

 Seek weaker performance measures 

 Kullback-Leibler distance 

 J-divergence 

 Bhattacharyya distance 
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Sparse sensing for detection 

Setting Neyman-Pearson  Bayesian 

Optimization criterion 
Kullback-Leibler distance 

or J-divergence 

Bhattacharyya distance  

or J-divergence 

Independent 

observations 
Ordering distances Ordering distances 

Dependent Gaussian 

observations 

(uncommon means) 

Convex: SNR matrix 

Greedy: Logdet SNR matrix 

Convex: SNR matrix 

Greedy: Logdet SNR matrix 

Dependent Gaussian 

observations 

(uncommon variances) 

Sup-sub: Kullback-Leibler dist. 

Convex: J-divergence 

Sup-sub: Bhattacharyya dist.  

Convex: J-divergence 
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• M. Coutino, S.P. Chepuri, and G. Leus, “Near-Optimal Sparse Sensing for Gaussian Detection with Correlated Observations,” 

IEEE Transactions on Signal Processing, vol 66, no. 15, pp. 4025-4039, Aug. 2018. 

• S.P. Chepuri and G. Leus, “Sparse Sensing for Distributed Detection,” IEEE Trans. on Signal Processing, vol. 16, no. 6, pp. 

1446-1460, Mar. 2016. 

• S.P. Chepuri and G. Leus, “Sparse Sensing for Distributed Gaussian Detection,” In Proc. of the International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP 2015), Brisbane, Australia, April 2015. (ICASSP best student paper award) 



Example: Convex or submodular? 
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Random Toeplitz correlation matrices based on array processing 

Similar 

performance; 

submodular 

approach is linear 



Example: Can “simple” greedy fail? 
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Subset of calibrated sensors 

Submodularity 

really helps! 



Recent developments 
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Subsampling signals on graphs 
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0

0.5

1

1.5
MA parametric PSD estimation from subset of nodes

True PSD

Least squares (N
s
=100), K=4

Sample 4 out of 34 nodes

• S.P. Chepuri and G. Leus, “Graph Sampling for Covariance Estimation,” IEEE Jour. on Sel. Topics in Sig. Proc. and IEEE Trans. 

on Sig. and Info. Proc. over Networks, joint special issue on Graph Signal Processing, vol. 3, no. 3, pp. 451-466, Sep. 2017. 



Recent developments 
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Structured selection for tensors 

   

    

Similar performance as state-of-the-art methods 

but 1.875 measurements vs. 80.000 measurements 

• G.Ortiz-Jimenez, M. Coutino, S.P. Chepuri, and G. Leus, “Sparse Sampling for Inverse Problems with Tensors,” IEEE 

Transactions on Signal Processing, submitted, Jun. 2018. 



Conclusions 

 Design space-time sparse samplers 

  Extend Nyquist-based classical sensing techniques 

 Basic statistical inference problems 

  Estimation, filtering, and detection 
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Sparse sensing 

Sparse signal not needed 

Samplers deterministic and sparse 

Compression practical, controllable 

Signal processing task  any statistical inference 



Reference material 
PhD thesis 

http://theses.eurasip.org/theses/648/sparse-sensing-for-statistical-inference-theory/ 
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Thank You! 

Questions?  


