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Compressive Sensing and 
Information Geometry in Radar Contents and Collaborations 

 Motivation: Information-based Radar Processing 

 Compressive Sensing (CS) 

 Information Geometry (IG) 

 Information-based Performance Analysis 
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Compressive Sensing and 
Information Geometry in Radar Motivation: INFORMATION-BASED PROCESSING (CS and IG) in Radar 
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Rx channel 1 

Rx channel 2 

data acquisition signal and data processing 

Data sizes are growing, e.g.  with higher resolution in range, Doppler and angles 

large data size & low information density! CS and IG in radar 

measurements 𝒚 = sensing-model 𝑨(𝛉) profile 𝒙   +  receiver-noise z  , z ~ CN (0, gI), i.e. complex Gaussian 𝑝 𝒚 𝛉  
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𝒚 matched filtering 𝒙MF = 𝑨H𝒚 
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Compressive Sensing and 
Information Geometry in Radar Compressive Sensing:  Radar Performance 

measurements 𝒚 = sensing-model 𝑨(𝛉) profile 𝒙   +  receiver-noise z  , z ~ CN (0, gI) 

CS/SSP benefits: higher resolution, multi-target analysis, fewer data/channels, …  

CS/SSP performance in processing gain, detection, resolution and accuracy? 

l1-norm optimization 
𝒙SSP = argmin

𝒙
 𝒚 − 𝑨𝒙 2+ ℎ 𝒙 1 

sparse-signal processing (SSP) 

radar profile 𝒙 
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compressive-data acquisition (CDA) 
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𝑀 < 𝑁 

 incoherence of  A : m(A), RIP or NSP, e. g.  low μ 𝑨 , μ 𝑨 = max
𝑖,𝑗,𝑖≠𝑗

𝒂𝑖
H𝒂𝑗  

 sparsity of 𝒙, 𝐾 = dim 𝑻 , 𝐾 < 𝑀 ≤ 𝑁, 𝑻 … true support set 

By = BA𝒙 

 y = A𝒙 

CS foundations 

B ∈ ℂ𝑀x𝑁, 𝑀 < 𝑁 

CS: Reduced complexity while improving, or at least maintaining, performance  
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Compressive Sensing and 
Information Geometry in Radar Information Geometry :  Radar Performance  

Information Geometry (IG) is stochastic SP where the intrinsic geometrical structure of a data 
model is characterized locally by the Fisher information matrix (FIM).   

Information Distance (ID) between pdf-s:  

resolution:  𝑝 𝒚 𝛉  and 𝑝 𝒚 𝛉 + δ𝛉  whose 𝛉 differ by a small δ𝛉 (of close targets)   

detection:  𝑝 𝒚 𝟎  and 𝑝 𝒚 𝛍 𝛉   whose 𝒚 is without or with signals 𝛍 𝛉 , 𝛍 𝛉 =𝐸 𝒚  
Bayesian variational inferences: true 𝑝 𝛉 𝒚  and latent𝛜-variational 𝑞 𝛉 𝒚, 𝛜  posteriors 

FIM 𝑱θ ≡ −E
𝜕2 ln 𝑝 𝒚 𝛉

𝜕𝛉𝜕𝛉𝐻
  MSE θ ≥ 𝑱θ

−1 

accuracy  

IG: information distances  
resolution 
detection 

Bayesian variational inferences 

machine/deep learning 
to be combined with CS-IG:  

- natural gradient most efficient 

- Fisher-Rao metric ⇒ IDs 

- Bayesian variational inferences 

Fisher-Rao metric 𝑑𝑠: 𝑑𝑠2 = 𝑑𝛉H𝑱θ𝑑𝛉, where 𝑱θ is FIM and 𝑑𝛉 infinitesimal change of 𝛉 
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Compressive Sensing and 
Information Geometry in Radar   Performance Analysis: Compressive Data Acquisition 

𝒚NS = 𝒂α + 𝒛 

𝒚AIC = 𝑩 𝒂α + 𝒛  

𝒚SS = 𝒂SSα + 𝒛SS 

𝒚RM = 𝑩𝒂α+ 𝒛RM 

SNR after MF, 𝑩 = 𝑩:  

𝛼∗,MF = 𝒂∗
H𝒚∗ 

R. Pribić, G. Leus and C. Tzotzadinis, “SNR Analysis of Compressive Data  Acquisition”,  IEEE Workshop  SSP 2018. 

PGMF,AIC = 𝑀
1

𝑀
+

𝑁 − 1

𝑀 +𝑁 − 1
≤ 𝑀 

PGMF,NS = 𝑁 

PGMF,SS = 𝑀 

PGMF,RM = 𝑁 1 +
𝑁 − 1

𝑀𝑁
 ≈ 𝑁 
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Analog-to-Information Conversion 
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Sparse Sensing (SS) 
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Rx channel 2 

Rx channel 𝑀 
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Random Mask (RM)   

𝒚RM 

MSc project (proposed by R.Pribić and G.Gerini, 2018)   
Metasurfaces for CS on Radar Array Antenna Systems  

CS: Reduced complexity while improving, 
or at least maintaining, performance  
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Compressive Sensing and 
Information Geometry in Radar 

Performance Analysis : Sparse-Signal Processing (SSP) 

Existing SSP theory:   𝒙SSP = argmin
𝒙

 𝒚 − 𝑨𝒙 2+ ℎ 𝒙 1 

 sensing coherence:   low 𝜇 𝑨 = max
𝑖,𝑗,𝑖≠𝑗

𝒂𝑖
H𝒂𝑗 , 𝒂𝑛  = 1 

 sparsity of 𝒙, 𝐾 = dim 𝑻 ,𝐾 < 𝑀 ≤ 𝑁, 𝑻 … true support set 

 SSP feasibility for 𝒙SSP in an estimated set 𝑺:  𝑢SSP,𝑛 ≤ 1, 𝑛 ∈ 𝑺 

     subgradient  𝑢SSP,𝑛 indicates nonzeros:  𝑢SSP,𝑛= 𝒂𝑛
H 𝒚 − 𝑨𝒙SSP /ℎ 

 ℎ ≡ hGLRT if noise only (no targets or 𝜇 𝑨 = 0) 

Existing (radar) processing 

point-spread function (PSF)   

only a few targets in a scene 

matched-filtered residuals  

Neyman-Pearson detection  

Stochastic (Bayesian) SSP radar processing is stochastic, e.g. 

Woodward, P. M. (1953)  Probability and information theory, with applications to radar, Pergamon. 

y= 𝑨𝒙 +z y = Ax + z  x ~ sparse() 

Hubert J. Flisijn,  Implementation of (Bayesian) CS in Radar Systems. MSc thesis at Thales NL Delft, University of Twente, 2011.  

I.Kyriakides and R.Pribić , Bayesian CS using Monte Carlo Methods. Eusipco 2013. 

SSP is sparse model-based detection-driven refinement of MF  
masking 

resolution  

multi-target  
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Compressive Sensing and 
Information Geometry in Radar 

Multi-target Performance Analysis: SSP Metrics 

detection: 𝑃fa,SSP and 𝑃d,SSP at ℎ? 
𝑃fa,SSP= P{ 𝑥SSP,𝑙 ≠ 0}, 𝑙 ∉ 𝑻 

  𝑃d,SSP= P{ 𝑥SSP,𝑘 ≠ 0}, 𝑘 ∈ 𝑻 

i.e. nonzero in a cell with no target 

i.e. nonzero in a cell with a target 

resolution: 𝑃res,SSP at ∆θ, SNR and ℎ? 𝑃res,SSP = P 𝑥SSP,𝑖 ≠ 0 ∧ 𝑥SSP,𝑗 ≠ 0 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑻 

accuracy: bounds (CRLB) and mean squared error (MSE) at target separation ∆θ, 𝐾, SNR, and ℎ? 

R Pribić and HL Yap, “False Alarms in Radar Detection within Sparse-signal Processing”, IEEE Workshop CoSeRa 2016.  
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Compressive Sensing and 
Information Geometry in Radar Performance Analysis: CDA and Multi-target  Accuracy 

data 𝒚~𝐶𝑁 α𝒂 θ , γ𝑰 :  𝒚 =  α𝑒𝑗𝛃θ + 𝒛,   

R. Pribić, “Information-based Analysis of Compressive Data Acquisition”,  (accepted) IEEE  Radar 2019 

D𝛽 = max
𝑛

𝛽𝑛 −min
𝑛

𝛽𝑛 

𝐽θ,NS =
2 α 2

γ

𝜕𝒂 θ  

𝜕θ

2

=
2 α 2

γ
𝛃 2 → 

α 2

γ

D𝛽
2

6
 

𝐽θ,RM = E
2 α 2

γ
𝑩RM𝛃

2 = 𝐽θ,NS 

𝐽θ,SS = E
2 α 2

γ
𝑩SS𝛃

2 =
𝑀

𝑁
 𝐽θ,NS 

MSE θ  ≥ CRLB θ = 𝐽θ
−1 

Multi-target 𝒚 =  α𝑒𝑗𝛃θ1 + α𝑒𝑗𝛃θ2 + 𝒛,  δθ = θ2-θ1 

CRLB
θ1
θ2

= 𝑱𝛉
−1 =

γ

α 2

𝐽1,1 𝐽2,1
𝐽1,2 𝐽2,2

−1

= 
γ α 2 

𝐽1,1𝐽2,2−𝐽1,2𝐽2,1

𝐽2,2 −𝐽2,1
−𝐽1,2 𝐽1,1

 

Multi-target CRLB realistic at smaller separations 𝛿θ 

𝐽2,1 = 2Re
𝜕𝒂𝐻 𝛉  

𝜕θ2

𝜕𝒂 𝛉  

𝜕θ1
= 𝐽1,2 →

2

D𝛽δθ

D𝛽
2

2
−

4

δθ2
sin

D𝛽δθ

2
+
2D𝛽

δθ
cos
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𝐽1,1 = 𝐽2,2 =  D𝛽
2 6  
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Compressive Sensing and 
Information Geometry in Radar Performance Analysis:  Resolution Metrics 

 Deterministic: Rayleigh distance θ𝑟𝑒𝑠 ∝
1

D𝛽
  (only by array sensing bandwidth D𝛽)  

 Stochastic: targets also involved, i.e. their SNR and separation δθ  

• Estimation approach: θ𝑟𝑒𝑠 ∝
1

D𝛽 SNR
 , i.e. best accuracy (CRLB) of estimated single-

target parameter θ with given SNR and array configuration 

• Detection approach: P𝑟𝑒𝑠 ∝ 𝑓 D𝛽, SNR, δθ ≡ probability of resolving targets at 

given SNR and separation δθ with given array configuration 

 Novel: Information-geometry (IG) distances for a complete P𝑟𝑒𝑠 

data 𝒚~𝐶𝑁 𝛍 θ , γ𝑰 :  𝒚 =  α𝑒𝑗𝛃θ + 𝒛,   

R. Pribić and G. Leus, “Information Distances in Radar Resolution Analysis”,  IEEE Workshop  CAMSAP 2017 
R. Pribić, “Information Distances in Resolution Analysis”,  SEE Workshop  GSI 2017 

IG: Information distances between pdf-s: 𝐶𝑁 𝛍 θ , γ𝑰  and 𝐶𝑁 𝛍 θ + δθ , γ𝑰  

D𝛽 = max
𝑛

𝛽𝑛 −min
𝑛

𝛽𝑛 , SNR = α 2 γ   
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Compressive Sensing and 
Information Geometry in Radar Performance Analysis: Proposed Stochastic Resolution Analysis (GSI’17 and CAMSAP’17) 

 

Resolution test: 𝐻0:  δ𝛉 = 𝟎 and 𝐻1:  δ𝛉 ≠ 𝟎    (Rao, 1945) 

Novel: via LR (likelihood ratio) and information distances 𝑑𝛍(θ), 𝑑𝛍 θ = δ𝛍𝐻𝑱𝛍δ𝛍 

between CN (𝛍 θ , gI) and CN (𝛍 θ + δθ , gI) which θ differs by δθ (two close targets) 

  𝑃res,𝑑𝛍(θ)  = P 𝜉LR,𝑑𝛍(θ) > ρ | 𝐻1 ,    where   ρ = 𝑁−1(0, 1, 𝑃fa)  

 Novel: LR distribution found and linked to information distance 𝑑𝛍(θ)  

γln LR = 2𝑅𝑒 𝒚 − 2𝛍 θ 𝐻δ𝛍 − δ𝛍 2     ⇒ 𝜉LR,𝑑𝛍(θ)~ 𝑁(𝑑𝛍(θ), 1) 

𝐻0:  𝒚 = 𝛍 θ + 𝛍 θ + 𝒛 =  𝒚0                        
𝐻1:  𝒚 = 𝛍 θ + 𝛍 θ + δθ + 𝒛 =  𝒚0 +  δ𝛍 
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Compressive Sensing and 
Information Geometry in Radar Stochastic Resolution Analysis: CDA Information Distances 

 Compression at reception (signal only, e.g. random masking, RM) preserves 𝑑𝛍 θ ,NS 

 Otherwise, e.g. compression before reception  (sparse sensing, SS) harms information distances  

𝑑𝛍 θ ,SS = 𝑀 𝑁 𝑑𝛍 θ ,NS 𝑑𝛍 θ ,RM = 𝑑𝛍 θ ,NS 𝑑𝛍 θ ,NS = δ𝛍 γ → D𝛽SNR 1 −
sin D𝛽δθ 2 

D𝛽δθ 2 
  

R. Pribić, “Resolution Analysis of Compressive Data Acquisition”,  Workshop  CoSeRa 2018 
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Compressive Sensing and 
Information Geometry in Radar Stochastic Resolution Analysis: CDA Resolution Probability 

 Lower 𝑃res,∗,SS while 𝑃res,∗,RM comparable with 𝑃res,∗,NS when 𝑀 < 𝑁 

 SSP resolution 𝑃res,SSP,∗ far (4dB or more with SS) from the bounds given by the IG-based probability 𝑃res,μ,∗ 

and 𝑃res,SSP = P 𝑥SSP,𝑖 ≠ 0 ∧ 𝑥SSP,𝑗 ≠ 0 | 𝐻1  , 𝑖 ≠ 𝑗,  in two target cells 𝑖 and 𝑗  

R. Pribić, “Resolution Analysis of Compressive Data Acquisition”,  Workshop  CoSeRa 2018 

bounds  𝑃res,𝛍,∗  

 𝑃res,μ and 𝑃res,SSP remain stable and realistic at larger separation (as 𝑑𝛍 𝜃 ) 
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Compressive Sensing and 
Information Geometry in Radar Performance Analysis CDA: Detection 

Smaller 𝑑KL,ss  while 𝑑KL,RM preserves 𝑑KL,NS if 𝑀 < 𝑁 

Chernoff-Stein lemma: 𝑃md,∗ ∝ exp −𝑑KL,∗ ,𝑃md,∗+ 𝑃d,∗ = 1 

                                                            𝑑KL Kullback-Leibler divergence  from 𝑝 𝒚 𝟎  to 𝑝 𝒚 𝛍 𝛉  

R. Pribić, “Information-based Analysis of Compressive Data Acquisition”,  (accepted) IEEE  Radar 2019 

Lower 𝑃d,SS while 𝑃d,RM preserves 𝑃d,NS if 𝑀 < 𝑁 

Higher 𝑃md,SS while 𝑃md,RM preserves 𝑃md,NS 
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Compressive Sensing and 
Information Geometry in Radar Further work: SSP Performance  

Deep Learning: 
autoencoder 

𝒚∗ = ℱ 𝛒 + 𝒛∗ 𝛒 = ℋ 𝒚∗  

CS/SSP: sensing model 𝑨(𝛉) essential in deconvolution but often not fully known in practice, … 

Stochastic Deep Learning 
complex-valued Deep Learning combined with  

the stochastic approach: IG and Bayesian methods  

𝒚𝑙 = 𝜓 𝑾𝑙−1
𝐻 𝒚𝑙−1 + 𝒃𝑙−1  𝛒 =  α θ  

refining 𝑨(𝛉) from data with known contents 

estimating unknowns α θ  with refined 𝑨(𝛉)  

R. Pribić, “Stochastic Deep Learning in CS Radar ”,  submitted to SEE Radar 2019 
Thales NL Internship (T. Magalas,  INP-ENSEEIHT Toulouse) “ Machine Deep Learning (MDL) with CS and IG”, March-September 2019.  
Thales NL Internship (L. Isselin, Univ. Strasbourg) “ Links of MDL with CS and IG”, June-August 2018.   

Stochastic Deep Learning: 

(Wasserstein) variational  
autoencoder 

posteriors 
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Compressive Sensing and 
Information Geometry in Radar Conclusions and Future Work 

CS and IG in information-based (Radar) Processing of complex-Gaussian measurements  

- CS/SSP performance illustrated by processing gain , accuracy, resolution and detection, and 

- assessed with IG tools for fewer measurements: compression after (AIC), before (SS) and at (RM) reception 

The proposed information-based performance analysis of CS: CDA and SSP, shows: 

 completeness of the (radar-) essential performance metrics 

 close links between CS and IG due to the emphasis on information content in data 

 clear preference to compression at reception (signal only!), e.g. with random masking (RM) 

 otherwise, with SS or AIC, radar performance heavily sacrificed 

 close ties between detection, accuracy and resolution (at small separations) 

Further work 
 demonstrator of RM in a metasurface antenna array (together with prof. G. Gerini at TU/e and TNO) 

 information-based analysis of CS/SSP performance with multiple parameters and multiple targets  

 analysis in continuous domain to determine the reference before any discretisation 

 stochastic deep learning for more accurate knowledge of sensing models  

 implementation of CS in an actual radar system: CDA together with SSP in a ThalesNL radar system! 

Questions? 


