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Learning About the Worla

How do we learn about the World?

Sense/Sample Collect Data

select next
sensing action

==) How can we take advantage of this feedback?
==) Can we quantify the gains?
==) Devise practical ways of using this feedback?



Inference of Sparse Signals

Gene expression Network Anomaly Detection

Can we reliably detect/identify sparse
patterns in signals?

* Detect the presence/absence of a sparse signal
* Locate the sparse signal components (support estimation)



Sparse Signal Models

We are interested in learning about a signal
= (xr1,...,2n) € R" .

E.g.: z; is the expression level of gene i
r; ‘anomalous’” traffic level in network node ¢

We consider situations where x is a sparse vector:




Collecting Noisy Observations

Normal Means (uniform coordinate-wise sensing):
Y,=a,+W;, ic{l,....,n}, where W, %" Ar(0,1)

Make exactly n measurements, all with the same precision...

Adaptive coordinate-wise sensing:
The kth observation (k € {1,2,...}) is given by
Vi =24, +(T) Y2 W, where Wy, "5 A(0,1)
A - entry of x measured at kth observation
[ - precision of the kth measurement
...Subject to a total precision budget

©. @)
Y Tp<n

k:l“"

Precision = SNR control



Adaptive vs. Non-Adaptive Sensing
Non-Adaptive sensing:

{ Ak, T }721 must be chosen prior to the collection of any
observations.

Adaptive Sensing:
A, ', are chosen sequentially and are functions of

{}/% Aﬁ) I—ﬁ}g;i_

Key Idea: allow future sensing location and precision to
depend on past observations !!!

] Zehetmayer, Bauer & Posch “Optimized multi-stage designs controlling
Related SettlngS: the false discovery or the family-wise error rate”, Statist. Med. 2008

Hao et al, “Drosophila RNAi screen identifies host genes important for
influenza virus replication” Nature 2008

Our setting is closely related to that of multi-armed bandit problems with
pure exploration...




Linear Projections/Compressed Sensing
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Donoho, “Compressed Sensing,”, IEEE Trans. Info. Th. 2006

Candés, Romberg, Tao, “Stable signal recovery from

incomplete and inaccurate measurements”, Comm. on Pure
and Applied Math. 2006.
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W ~ N(0,I)

Adaptive Compressive Sensing: design the rows of A sequen-

tially, based on previous observations.

Sensing budget: E[||A[Z] < n.

 This generalizes the previous coordinate-wise sensing model
- Compressive Sensing can naturally deal with sparsity domains
different than the canonical one



Outline
m=) Coordinate-wise Sensing (Adaptive vs. Non-adaptive)

* Dealing with structured sparsity

m=) Compressive Adaptive Sensing

- Statistical guarantees
- Sample-complexity considerations

For simplicity of presentation consider a slightly simpler signal model:
T

. Signal support set
xi:{“ZES , where |S| < n, u>0

0 ids

How small can © be so that we can still perform reliable
inference about S ?




Inference Goals

Assume the set S belongs to a class of subsets C.

Estimation:
Construct a set estimator S minimizing:

Expected Hamming Distance: maxgccEg [|§AS|]
Error Probability: maxsecPs (5 # S)

Detection:

Ho:S=10 VS. Hy:SecC
(no signal present) (a signal in the class)

Given a test function ® € {0, 1} minimize

Re(®) = Py(P # 0) + ngEaCXIP’S(@ #=1).

Obviously, the difficulty of the problem depends on the class C
under consideration...




Structured and Unstructured Classes

The class of ALL subsets of {1,...,n} with cardinality s. In this
case we say the signal support has no structure:

® o o ® °

s-sets: R : :

For other classes C we say the signal support has structure:

XXX
s-intervals:

000000 0000000000
C={{1,...,s},{2,...,s+1}, ... , {In—s+1,...,n}} .
k disjoint eeecee oooee
s-intervals: SR

s-stars in a complete
graph with n edges:



Structured and Unstructured Classes

Other interesting structured classes:

unions of k£ s-stars
(with distinct centers)

a Size s submatrix of a

Vvn X 4/n matrix

Structure can be very helpful for non-adaptive sensing, both
for support estimation or detection:

- Addario-Berry, et al., “On Combinatorial Testing Problems”, AoS 2010
- Arias-Castro, “Searching for a trail of evidence in a maze”, AoS 2008
- Butucea, Ingster, “Detection of a sparse submatrix of a high-
dimensional noisy matrix”, Bernoulli, 2014

- Kolar, et al., “Minimax Localization of Structural Information in
Large Noisy Matrices”, NIPS 2011



Signal Detection

Theorem: (normal-means/non-adaptive sens.) (Addario-Berry
et al., 2010) Consider the class of all s-sets. If Re(P) < € necessarily

_ 2
W\/Iog (1+nlog(1+3(1 ) )) |
S
If s < +/n this means pu > (/log (n/32 .

Sharper bounds exist (e.g., Ingster ' 99, Baraud " 02, Donoho and Jin " 04)

Theorem: (Coordinate-wise Adaptive Sens.) (C. '12)

If Re(®P) < e we have necessarily

> 1 [21dg =
= S J ol
* There is a sensing/detection algorithm achieving this bound

- Structural assumptions cannot further improve this result!!



Support Estimation

Theorem: (Non-Adaptive Sens.) Let C denote the class of all
s-sets and € > 0. If

maxEs(|SAS|) < e,
SeC

then necessarily u > v/2l1ogn.

Similar bounds can be shown for other classes:

Unions of s-intervals: ~ (/1log2

(loose lower bounds)
Unions s-stars: ~ 4/log @

s-submatrices of /n x /n matrices: ~ \/% log =

If signal is sparse (s < n) then the dependence on the extrinsic di-
mension is always of the form ~ v/logn, regardless of the structure.

Can adaptive sensing improve upon non-adaptive sensing?



Simple Thresholding

A simple sequential thresholding procedure

i : Y;:(l) = x; + N (0, 3)

o X * X




Simple Thresholding

° X e I
. . . ‘ -
4
° L y(2) = 2, 4+ N(0,3)
o? 4 *
X i: n
]
® O ® €T

and so on for T steps... For sparse signals we remove about
half of the components from further consideration at each step



Simple Thresholding

How much of the precision budget do we use?

] T T
E {Z r = %E {Z ]S(jl)]} < %Z (Zj_ls + 8) < %(’n—S)-I-TS <n
(2% _

=1 =1

What is the expected number of errors we make?
E[|SAS|| =E HS(T) \ SH +E HS \ S(T)H

False positivV \Raise negatives

n Ts e
< — < Zexp |-
2! -2 p( 6)

Taking T = log, 2 ensures E [|[SAS|] < e provided

1

€

2
wo > \/6Iogs—|—6logI092—n—|—6log
€



Adaptive vs. Non-Adaptive

Requirements to ensure that maxgec E H§ASH — 0, asn — o0

Simple Thresholding:

w > @ 6.1loglog-n

Best non-adaptive sensing procedure:

D)

Actually, the loglogn term is an artifact of the simple procedure,
and can be removed by either using component-wise SPRT, or us-

ing a slighlty more involved thresholding procedure (Malloy-Nowak
'12).

- Malloy, Nowak. “Sequential Testing for Sparse Recovery,” IT Trans, 2014
- Haupt, C., Nowak, “Distilled Sensing: Adaptive Sensing for Sparse
Detection and Estimation”, IT Trans, 2011

Can we use these ideas when there is structure?



|dea for a General Procedure

s-sets: the Simple Thresholding/Multiple SPRT approach is a
coordinate-wise query of all n entries

A general approach for structured cases:

* Devise a noiseless support estimation procedure, making
the “minimal” number of queries necessary to uniquely identify
the support (and exploring the combinatorial structure of the
signal class).

- Robustify the noiseless procedure to be able to deal with
noisy observations, using SPRTs



Example s-intervals

Search phase: sequentially sample entries 1,s4+1,2s+ 1,... until
a significant component is found

Refinement: sample elements to the left of the significant entry
until reaching the end of the interval

Once a noiseless procedure has been chosen, all we need to do is
to replace the noiseless queries by SPRTSs to ensure

i) the probability of not recovering the support is small
ii) The expected total precision spent satisfies the constraint

o0
E Zrk <n
k=1



sk < /n

Upper and Lower Bounds

With careful calibration of the SPRTs one can significantly improve on
non-adaptive sensing. Matching adaptive sensing lower bounds can
also be derived (but do require some careful work)

Scaling laws necessary and sufficient to ensure maxgec Eg[SAS] — O:
Non-Adaptive Adaptive

~ +/logn ~ /109 s ~ /100 s

reiiiiiiii |~y /Tlog(n/s) |~ \/%logks ~ \/Llogks

Zlog & N\/%lOQQkS N\/%Iogks

Y

1 /1 2 /1

Tanczos, C. “Adaptive Sensing for Estimation of Structured Sparse
Signals,” in IEEE IT Trans. , 2015




Linear Projections/Compressed Sensing

Instead of point-samples, one can consider the linear projection

measurements
G ( ) /:\ ™
— i g -+
< . / E S
Y € Rf A € Rtxn - W ~ N(0,1)
For carefully chosen sensing matrices A sig- -
nals of sufficient magniture can be reliably es- |jg
timated by taking ¢ < n projections. \0)
r € R"

In this setting the precision budget is conveniently cast as the re-
striction

E[AIF] <7 .



Detection using Linear Projections

Theorem: (Arias-Castro, '12) For reliable detection using adaptive

compressive sensing it is necessary and sufficient for the signal
magnitude to be of the order

1 compare with ~ \/E
~ 2 for coordinate-wise sensing

As in the previous setting, structure does not help for detection.

Moreover, we can achieve the above bound using only a non-
adaptive sensing procedure !!!

For estimation the story is different...



Support Estimation with Linear Pro;.

Non-Adaptive Sensing: If the number of measurements /2 is large
enough it is still necessary that

see e.g., Wainwright, '09) .

Theorem: (Haupt, Baraniuk, C. and Nowak '12) Using ~ slogn
adaptive observations we can estimate the support with probability
at least 1 —o(1). If the minimum signal amplitude is greater than

a constant times Opfimal rate
\/Iogs Iog‘T’o‘ch?dn :

(Some) related work —

Arias-Castro, et al., “On the Fundamental Limits of Adaptive Sensing”, 2011

Arias-Castro, Davenport, “Compressive Binary Search”, 2012

C., “Adaptive Sensing Performance lower Bounds for Sparse Signal
Estimation and Testing,” 2012

Balakrishnan, et al., “Recovering block-structured activations using

compressive measurements,” 2012

Malloy, Nowak, “Near-optimal Adaptive Compressed Sensing”, 2014




Capitalizing on Structural Properties

Same idea as before: alternate between search and refinement
stages:

- Key fact: compressive sensing leads to a more effective search
phase, as it can detect weaker signals.

099999

Search phase: Divide the domain is bins of size s/2 and use a
(actually non-adaptive) CS test to find a bin entirely contained in

the interval

Refinement: Focus on the “central” bin above and the neighbor-
ing bins, and do coordinate-wise adaptive sensing



Adaptive Compressed Sensing e

Scaling laws necessary and sufficient to ensure maxsec, Es[SAS] — 0:

Non-Adaptive Adaptive
IS S S SO ~ v/1ogn ~ +/10g s ~ /100 s
HHIT ~/Zlogn/s |~+/Slogks ~ \/Ziogks
~ |ogﬁ N\/S%Iogks N\/S%Iogks
] ~ 1 Iogs
\/\/glogn/s \/ l0og s

Téanczos, C. “Adaptive Compressed Sensing for Estimation of
Structured Sparse Signals,” IT Trans, 2017

Vs X /s submatrix
These results characterize the statistical difficulty of the problem, but
completely disregard sample complexity...



Minimizing Sample Complexity - CASS

For the case of s-sparse sets there is a procedure (Compressive

Adaptive Sense and Search — CASS) attaining the results in the
previous slide, but using only on the order of ~s log n projections

Malloy, Nowak, “Near-Optimal Adaptive Compressed Sensing”, IEEE IT, 2014
e oo e
EQ.CQQEQ . .Q.i.'...i‘ oK QQE..CC CEQQ: QQEQCQQQEQ.CC.E

(j = 1) partition domain into 2s bins (at most s bins will

= ) P
contain signal)
—

For each bin test Hp : bin empty vs. Hi: bin non-empty
using projection vector

(J <109, 3-) Split each significant bin in two and repeat the above
procedure up to a maximal depth



CASS - Guarantees

Theorem (Malloy and Nowak, 2014): Provided p > /32log 2
we have

P(S#S)<e,
and the CASS procedure uses at most 2s IOQQQES projections.

The CASS idea of binary bisection can be combined with the search
and refinement approach and used to deal with structure as well:

Unions of k s-intervals:

search: use CASS to find the “middle” of an interval
refinement: use CASS only “around” each found interval

Proposition: Provided p > \/7% log @ we have
E[|SAS|] <€,

and collects at most 3% (I092 2%3 -+ %s) projections.




sk < /n

Adaptive Compressed Sensing

Scaling laws necessary and sufficient to ensure maxsec, Es[SAS] — 0:

Non-Adaptive Adaptive
IS S S SO ~ v/1ogn ~ +/10g s ~ /100 s

~/Llogn/s |~+/%logks ~ /Llogks

N,/|og@ N\/S%Iogks N\/S%Iogks
N\/L|an/3 N\/ﬁk)gs N\/S%Iogs

NE

Téanczos, C. “Adaptive Compressed Sensing for Estimation of
Structured Sparse Signals,” IT Trans, 2017

Vs X /s submatrix

These limits can be attained taking only ¢ ~ slogn projections, by
the same principles of the CASS algorithm.



Numerical Results

n=2A15, s=274 n=2A15, s=274
o o !
- ] B Non-adaptive - ] | @ CASS
B CASS © | B Adaptive
o B Adaptive o B Adaptive (0.95)
% o B Adaptive (0.95) § © |
B © B ©
b b
2 2
E © | E «©
E o E o
© [
T T
ie] ©
E ° E © =
) o )
C C '
(0] (0] !
g o s e o e
g © | [ g ° 1
@ ' / © : _>=<=
o | _ _ DO i o | I i ]
o 1 - N i O- 1 -
T T T T T T T T T T1 T T T T T T 1 T T

01 05 09 13 17 21 3.0 4.0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

t t

Even though these procedures (particularly CASS) were designed to
ensure worst-case guarantees they still seem to have very
reasonable performance



Remarks

- The submatrix case is more delicate than presented here.
For non-square matrices one encounters different inference
regimes, and there are some gaps between upper and lower
bounds...

- Good lower bounds on the sample complexity of adaptive
compressive sensing are still needed.

Non-Adaptive Sample Complexity: In order to have vanishing

error we must take Q (Isog)(i(fﬁ))) projections.

Adaptive Sensing Conjecture: Near the estimation threshold we

need Q2(slog(n/s)) projections
(best existing lower bound we are aware of is Q2(s)).

Aksoylar, C., Saligrama, V “Information-theoretic bounds for
adaptive sparse recovery” (2014)



Final Remarks

 Deriving good sample complexity and performance lower
bounds for adaptive (compressed) sensing is tricky. A common
challenge (still open): characterize accurately how information

contracts when using adaptive sensing...

* There are other interesting settings one can consider:

* Detection of correlations

Castro, Savalle, Lugosi, “Detection of Correlations with Adaptive
Sensing”, in IEEE IT Trans., 2014

» Detection of evolving signals

Tanczos, C. “Are there needles in a moving haystack? Adaptive

sensing
for detection of dynamically evolving signals", to appear in Bernoulli

Thank You



