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Motivation

u The space of covariance matrices is not an Euclidean space
Ø The set of positive definite matrices is a convex cone

u Measure of closeness must be modified in order to

u Gaussian normal probability distributions define a 
manifold with known geometry. [Lang,	2001]

[Vandenberghe,	2012]

u In this manifold, distances can be measured based on 
the Fisher’s information matrix [Rao,	1945]
Ø Fundamental results in estimation theory [Crámer,1946]

[Amari,	1997] [Cencov,	2000]
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u Information geometry considers probability distributions as structures of 
differential geometry

Ø Not necessary flat spaces anymore [Rao,	1945]

uProbability distributions can be treated as points in the space (manifold)
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Where to measure the distances?

How to measure the distances?

[Amari,	1980]	[Amari,	1997]



Information Geometry 

u Where to measure?
Ø Naturally, in the manifold of probability distributions!

u Then, how we should measure distances?
Ø Space is not necessary flat! (Euclidean distance 

is not adequate anymore!)
Ø The Fisher’s information matrix is introduced in 

[Rao,1945] as Riemannian metric for the manifold
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Ø The straight line’s concept is extended in manifolds by 
geodesic curves

Geodesic : Parametrized curve which minimize
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Why is this metric relevant?

Crámer-Rao Lower Bound

V ar(✓̂) � CRLB(✓) = G�1(✓)

G(✓)where is the Fisher information matrix.

Euclidean similarity matrix between pairs of Azimuth 
angles in 1D Array

Information Geometry similarity matrix between pairs of 
Azimuth angles in 1D Array

u Benefits of the metric:
Ø Geometrically correct (manifold distance)
Ø Contains information about estimation

capabilities (Fisher information)
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Information Geometry of 
Covariance Matrices

Manifold Coordinates Metric Geodesic Distances

Measurements	
Model

Signal	
Processing

[Barbaresco,	2011]

x ⇠ CN (0,R(✓))

Measurements model

u Information geometry based processing

Fisher’s Information
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IG Based DOA Estimation

u Classical signal processing
Ø Flat metric, Normed Space, Not optimal

u Information Geometry of Covariance matrices
Ø Takes into account the structure of covariance matrices’ manifold

[Barbaresco,	2011] [B.	Balaji,	2014] [Ke Sun,	2014][S.T.	Smith,	2000]

u Data Model
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H

Antenna array manifoldA :

Rxx = E{xxH}

Problem: Estimation of DOA by minimization of information geometry distance

Multivariate Optimization Problem
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IG Based DOA Estimation
u Rank-1 Problem Instance

Feasible set

Ø IG-based pseudo-spectrum

where

u Relation to MVDR

Ø Differences in performance for

(Line search)



Results

Comparison for two sources at [-20o, -23o]

Close sources More sources than antennas

13 Sources present in data acquired by 11 antenna 
elements under a SNR of 10dB



Conclusions

u By considering the geometry of the manifold, IG provides natural distances which
could lead to improvements in algorithms’ performance.

u We obtained a simple DOA estimation algorithm based on IG geodesic
distances
Ø MVDR is related to the rank-1 instance of the IG-based DOA estimation problem.

u IG-based DOA estimation leads to
Ø Improvements in resolution power for closed sources at low SNR
Ø Identification of more sources than antenna elements


