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4.1 INTRODUCTION
For coherent detection in a wireless communication system, channel state information (CSI) is indis-
pensable. Channel estimation has drawn tremendous attention in the literature (see Tong, Sadler, &
Dong, 2004 and references therein), where the pilot-aided method is one of the most intensively stud-
ied approaches. This method is especially attractive for time-varying channels because of their short
coherence time.

In this chapter, we will address pilot-aided channel estimation for both orthogonal frequency divi-
sion multiplexing (OFDM) and single-carrier systems, where pilots are inserted in the frequency
domain and time domain, respectively. We study these two systems under one framework because in
the context of channel estimation, both systems can be characterized by data models of the same form.
More specifically, the received samples can be expressed as the joint effect of the information part (due
to the pilots), the interference part (due to the unknown data symbols), and the noise. Consequently, our
task is to design a channel estimator that can combat both the interference and the noise. Such a data
model is typical for OFDM over time-varying channels, where due to the Doppler effect, the orthogo-
nality between the subcarriers is destroyed, and the channel matrix in the frequency domain becomes
effectively a diagonally dominant yet full matrix instead of a diagonal matrix. As a result, the received
frequency-domain samples depend on both the pilots and the unknown data symbols. For single-carrier
systems, the channel matrix in the time domain is a strictly banded matrix if a finite impulse response
(FIR) assumption for the channel is applied, and therefore, we can, in practice, find some received
samples that solely depend on the pilots. However, it is sometimes beneficial to also consider received
samples that depend on the unknown data symbols as well, to better suppress the interference and the
noise. In any case, the resulting data model for single-carrier systems looks very similar to the data
model for OFDM systems, and similar channel estimation techniques can be applied. Note that the
considered data model can also account for superimposed pilot schemes (Ghogho & Swami, 2006;
He & Tugnait, 2007), where the pilots and the data symbols coexist on the same subcarriers or time
instants.

Whether we are dealing with OFDM or single-carrier systems, estimating a time-varying channel
implies estimating a large number of unknowns, making the channel estimation problem much more
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difficult than in the time-invariant case. As a remedy, we adopt in this chapter a parsimonious model,
referred to as the basis expansion model (BEM), to approximate the time variation of the channel (see
Section 1.6.1). If the BEM is accurate with negligible approximation error, channel estimation can be
achieved by just estimating the BEM coefficients, which are much smaller in number than the actual
unknowns, i.e., the channel tap values at different time instants.

In the remainder of the chapter, we first discuss the system and channel model in Section 4.2. In
Section 4.3, we then present channel estimation algorithms within a single OFDM symbol/time block.
We indicate how to position the pilots, where to select observation samples, and what is the best chan-
nel estimation strategy. In Section 4.4, we extend these methods to situations where multiple OFDM
symbols/time blocks are utilized simultaneously. In this case, the position of the pilots plays an impor-
tant role in the performance. Extensions to multiple-antenna systems are considered in Section 4.5 and
adaptive channel estimation is briefly discussed in Section 4.6. We conclude this chapter in Section 4.7.

4.2 SYSTEM AND CHANNEL MODEL
4.2.1 System Model
Let us start with the channel input/output relationship in discrete form. The channel is assumed to be
a doubly selective (doubly dispersive) channel that can be modeled by an FIR filter, which takes the
effect of the transmitter filter, the propagation paths, and the receiver filter into account. Let us use
h[n,m] to denote the mth channel tap at the nth time instant and let us assume that the maximal channel
order is M− 1. For such a channel, if we use s[n] and r[n] to represent the transmitted and received
signal at the nth time instant, respectively, they are related to each other through the channel as

r[n]=
M−1∑
m=0

h[n,m]s[n−m]+w[n], (4.1)

where w[n] stands for the additive noise.
Let us consider a block-wise transmission scheme, where we handle the transmitted and received

sequences in blocks. Suppose the jth data block a[ j] groups K data symbols and can be expressed as

a[ j], (a[ jK] · · · a[( j+ 1)K− 1])T .

Before transmission, a[ j] is first transformed by a linear precoding matrix T of size (K+M− 1)×K.
The resulting (K+M− 1)× 1 vector is given by

s[ j], (s[ j(K+M− 1)] · · · s[( j+ 1)(K+M− 1)− 1])T , Ta[ j].

Note that T introduces a redundancy equal to M− 1 at the transmitter. Such a redundancy is useful in
many applications, e.g., to exploit the channel diversity, or to better combat the interference coming
from adjacent blocks due to the channel memory, as well as for many other purposes (Scaglione,
Giannakis, & Barbarossa, 1999a,b). We will come back to this issue later on.

At the receiver, the received sample stream r[n] is partitioned in blocks accordingly: r[ j] ,
(r[ j(K+M− 1)] · · · r[( j+ 1)(K+M− 1)− 1])T . Based on the FIR property of the channel, we can
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rewrite the channel I/O relationship of (4.1) in a block form as

r[ j]= H̃[ j]
(
sT

IBI[ j] sT [ j]
)T
+w[ j], (4.2)

where w[ j] , (w[ j(K+M− 1)] · · · w[( j+ 1)(K+M− 1)− 1])T , and H̃[ j] is the (K+M− 1)× (K+
2M− 2) channel matrix representing the convolutive operation of the channel, which is given by
[H̃[ j]]nm , h[ j(K+M− 1)+ n− 1,M− 1+ n−m]. Because the channel has a memory of M− 1, r[ j]
will not only depend on s[ j], but also on the last M− 1 symbols from the previous block s[ j− 1],
which is denoted in (4.2) as sIBI[ j] , (s[ j(K+M− 1)−M+ 1] · · · s[ j(K+M− 1)− 1])T . The effect
of sIBI[ j] is also known as the interblock interference (IBI) as indicated by its subscript. We can further
rewrite (4.2) by splitting H̃[ j] into its first M− 1 columns and last K+M− 1 columns, denoted by
HIBI[ j] and H[ j], respectively, which leads to

r[ j]=HIBI[ j]sIBI[ j]+H[ j]s[ j]+w[ j].

Assuming perfect block and symbol synchronization, we first apply a linear decoder at the receiver,
in the form of a K× (K+M− 1) matrix R. This results in

y[ j], Rr[ j]= RHIBI[ j]sIBI[ j]+RH[ j]s[ j]+ z[ j], (4.3)

where z[ j] , Rw[ j].
The decoder R as well as the precoder T depend on the specific (de)modulation scheme. Two

particular cases are discussed below, namely OFDM and single-carrier modulation. For both systems,
different forms of transmitter redundancy can be adopted, such as the use of a cyclic prefix (CP), zero
padding (ZP), or nonzero padding (NZP). We will restrict ourselves to the CP case. Other forms of
transmitter redundancy can be derived in a similar way.

4.2.1.1 OFDM System with CP
In an OFDM system where a CP is embedded at the transmitter, the precoder T and decoder R can be
expressed as

T= TCPWH
K ,

R=WKRCP,

where WK denotes the K-point unitary DFT matrix, i.e., [WK]kl , (1/
√

K)e−
√
−12π(k−1)(l−1)/K , the

(K+M− 1)×K matrix TCP , ((0(M−1)×(K−M+1) IM−1)
T IK)

T appends a CP, and the K× (K+
M− 1) matrix RCP , (0K×(M−1) IK) discards the part of the received block corresponding to the CP.
Because the transmitter redundancy equals the maximal channel order M, the IBI disappears and (4.3)
becomes

y[ j]=WKRCPH[ j]TCPWH
K a[ j]+ z[ j]=WKHc[ j]WH

K a[ j]+ z[ j]=Hd[ j]a[ j]+ z[ j], (4.4)

where Hc[ j] , RCPH[ j]TCP is the K×K time-domain channel matrix, and Hd[ j] , WKHc[ j]WH
K

is the K×K frequency-domain channel matrix. If the channel is static or only slowly chang-
ing such that the time variation of the channel within an OFDM symbol can be neglected, Hc[ j]
will be a circulant matrix (hence the subscript “c”) with (h[0] · · · h[M− 1] 01×(K−M+1))

T on its
first column and as a result Hd[ j] will be a diagonal matrix (hence the subscript “d”) with
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√
KWK(h[0] · · · h[M− 1] 01×(K−M+1))

T on its diagonal. Note that we have dropped the time index
n in the channel tap h[n,m] because of the time-invariance assumption.

However, when the channel is varying faster, the circularity of Hc[ j] is destroyed, and thus Hc[ j] is
not diagonalizable by (I)DFT operations. In principle, Hd[ j] becomes a full matrix, where the nonzero
off-diagonal entries induce intercarrier interference (ICI). The entries along the antidiagonal direc-
tion basically indicate how much the bandwidth will spread due to mobility-induced Doppler shifts.
Because, in practice, this Doppler spread is limited, we can assume that most of the power in Hd[ j] is
concentrated on and close to the main diagonal, and it will gradually reduce in the antidiagonal direc-
tion. Hence, we may assume that Hd[ j] is approximately circularly banded. This assumption has also
been advocated in Stamoulis, Diggavi, & Al-Dhahir (2002) and Cai & Giannakis (2003).

4.2.1.2 Single-Carrier System with CP
In a single-carrier system with a CP, the (I)DFT operations are omitted at the transmitter and receiver,
and the precoder T and decoder R simply become

T= TCP,

R= RCP.

As in the OFDM case, the IBI is suppressed and (4.3) can be expressed as

y[ j]= RCPH[ j]TCPa[ j]+ z[ j]=Hc[ j]a[ j]+ z[ j]. (4.5)

It is, in many applications, common to transform the single-carrier system model in (4.5) from
the time domain to the frequency domain just like OFDM. For time-invariant channels, this operation
will enable a simple one-tap channel equalizer (Falconer, Ariyavisitakul, Benyamin-Seeyar, & Eidson,
2002) because the channel matrix in the frequency domain Hd[ j] will become diagonal, as explained
earlier. Even if the channel is time-varying, it can still be attractive to consider a frequency-domain
equalizer because of the circularly banded assumption on Hd[ j], an idea that has been explored in
Schniter & Liu (2003) and Tang & Leus (2008) (see also Chapter 6).

For channel estimation, however, it is not necessary to transform the single-carrier data model from
the time domain to the frequency domain. The reason for this is that we will always work in the domain
where the pilots will be embedded, which is in the frequency domain for the OFDM system and in the
time domain for the single-carrier system.

4.2.2 BEM Channel Model
In the OFDM system as well as in the single-carrier system, estimating h[n,m] requires the
estimation of KM unknowns per OFDM symbol/time block, which is quite a lot. However,
due to the fact that there is some correlation among these unknowns, the problem can be
reduced. One approach to reduce the number of unknowns is to use a BEM to model the
time variation of the channel (see also Section 1.6.1). To explain the BEM, let us assume
that the time variation of the mth channel tap is smooth, and thus h[n,m] is correlated in the
time index n. Then, we can accurately model K consecutive samples of the mth channel tap,
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e.g., h[ j(K+M− 1)+M− 1,m], . . . ,h[( j+ 1)(K+M− 1)− 1,m], as
h[ j(K+M− 1)+M− 1,m]

...

h[( j+ 1)(K+M− 1)− 1,m]

≈ (u0 · · · uI−1

)
︸ ︷︷ ︸

U


c0, j[m]

...

cI−1, j[m]

, (4.6)

where I− 1 is the BEM order, the K× 1 vector ui is the ith BEM function, and ci,j[m] is the ith BEM
coefficient of the mth channel tap within the jth block. Note that the BEM matrix U is a tall matrix
because I is generally much smaller than K. It is furthermore predetermined and independent of the
channel. The accuracy of (4.6) will depend on the design of the BEM matrix U and the choice of the
BEM order I− 1.

Different BEM designs are documented in various articles such as the discrete Karhunen-Loève
BEM (DKL-BEM) (Visintin, 1996; Yip & Ng, 1997; Haykin, 1996; Teo & Ohno, 2005), the dis-
crete prolate spheroidal BEM (DPS-BEM) (Zemen & Mecklenbräuker, 2005), the complex exponential
BEM (CE-BEM) (Tsatsanis & Giannakis, 1996; Cirpan & Tsatsanis, 1999), and the polynomial BEM
(P-BEM) (Borah & Hart, 1999a,b; Tomasin, Gorokhov, Yang, & Linnartz, 2005). Note that the CE-
BEM can further be categorized into two types: the critically sampled CE-BEM (CCE-BEM) (Guillaud
& Slock, 2003; Ma & Giannakis, 2003; Ma, Giannakis, & Ohno, 2003; Leus & Moonen, 2003; Kannu
& Schniter, 2005) and the oversampled CE-BEM (OCE-BEM) (Thomas & Vook, 2000; Leus, 2004;
Cui, Tellambura, & Wu, 2005). BEM designs other than the above are also reported, e.g., Zakharov,
Tozer, & Adlard (2004) use a spline approach. Besides, it is also possible to combine the above BEMs
for different purposes (Stamoulis, Diggavi, & Al-Dhahir, 2002; Nicoli, Simeone, & Spagnolini, 2003;
Gorokhov & Linnartz, 2004). A comparison of the modeling performances of some BEMs is given
in Zemen and Mecklenbräuker (2005) and in Tang (2007). It is noteworthy that all the above BEMs
can, in principle, be utilized in this chapter with one minor adaptation: if Ũ is one of the original BEM
designs, we will construct a new BEM out of it by adopting

U= ŨQ, (4.7)

where Q is an I× I matrix that makes the columns of U orthonormal, i.e., UHU= II (note that some
original BEM designs already satisfy this property but not all of them). Such matrices will improve the
numerical stability of the proposed algorithms.

Repeating the BEM approximation procedure of (4.6) for all channel taps, we obtain

h[ j]≈ (U⊗ IM)c[ j], (4.8)

where h[ j] , (hT
0 [ j] · · · hT

K−1[ j])T , with hk[ j] , (h[ j(K+M− 1)+M− 1+ k,0] · · · h[ j(K+M− 1)

+M− 1+ k,M− 1])T, stacks all channel taps in the jth block and where c[ j] , (cT
0 [ j] · · · cT

I−1[ j])T,

with ci[ j] , (ci,j[0] · · · ci,j[M− 1])T, stacks the BEM coefficients of all channel taps in the jth block.
The notation ⊗ stands for the Kronecker product. By means of (4.8), we are able to reduce the total
number of unknown channel parameters from KM to IM with I� K.

We can now also express the time-domain channel matrix Hc[ j] and the frequency-domain channel
matrix Hd[ j] using the BEM. Observing that each diagonal in Hc[ j] corresponds to one channel tap,
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we can derive after some algebra that

Hc[ j]=
I−1∑
i=0

Ud,iCc,i[ j], (4.9)

where Ud,i is a diagonal matrix with ui on its diagonal, and Cc,i[ j] is a circulant matrix with
(cT

i [ j] 01×(K−M))
T on its first column. The frequency-domain channel matrix Hd[ j] can then be

expressed as

Hd[ j]=WKHc[ j]WH
K =

I−1∑
i=0

WKUd,iW
H
K WKCc,i[ j]WH

K =

I−1∑
i=0

Uc,iCd,i[ j], (4.10)

where Uc,i , WKUd,iWH
K is a circulant matrix with (1/

√
K)uT

i WH
K on its first row and Cd,i[ j] ,

WKCc,i[ j]WH
K is a diagonal matrix with

√
KWK

(
cT

i [ j] 01×(K−M)
)T on its diagonal.

For the channel estimation schemes to be discussed in the ensuing sections, we will use the BEM
channel matrices defined in (4.9) and (4.10) instead of the true channel matrices in the system model,
and we will estimate the channel by estimating the BEM coefficients. The BEM modeling error will
not be taken into account in the design of the channel estimators. This is motivated by the fact that
if the BEM is accurate, the modeling error is usually on the order of 10−4 as reported in Zemen and
Mecklenbräuker (2005) and Tang (2007), which is much smaller than the typical channel noise level.
However, if the BEM is not accurate enough, then we will never obtain a reliable estimate, even if we
design a channel estimator that takes the BEM modeling error into account, simply because the BEM
itself is not accurate. Finally note that although the BEM modeling error is not taken into account in
our channel estimator design, its effect will be considered in the simulations, where we will compare
the estimated channel with the true channel instead of the BEM channel.

4.3 CHANNEL ESTIMATION BASED ON A SINGLE BLOCK
4.3.1 Introduction
In the previous section, we have shown how a communications scheme can be split into temporal
blocks. In this section, we will discuss block-based channel estimation, or in other words, the channel
is estimated every time a block of samples is received. This strategy is especially attractive for time-
varying channels, where, due to a short coherence time, it is not possible to gather a large amount of
received samples for which the channel is correlated. Because we only focus on a single received block
in this section, we will drop the block index j for the sake of simplicity.

We will confine ourselves to pilot-aided channel estimators. For one transmitted symbol block a, let
p denote the pilot symbols and d denote the unknown data symbols. Defining P as the set of positions
of the pilot symbols and D as the set of positions of the unknown data symbols, p has length |P|
and d has length |D |, where |S | denotes the cardinality of the set S . Such a notation can account for
various pilot insertion schemes. One such scheme is a multiplexed pilot scheme, where the pilot and
unknown data symbols occupy different locations, i.e., P ∩D = ∅ and P ∪D = {0, . . . ,K− 1}. But
it also allows us to model a superimposed pilot scheme, where the pilot and unknown data symbols
coexist on the same positions, i.e., P =D = {0, . . . ,K− 1}. Let us at this point also introduce the
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notation x{S } to represent the subvector that collects the elements of the vector x with indices in the
set S , as well as X{S1,S2} to represent the submatrix of X containing the rows with indices in the set
S1 and the columns with indices in the set S2, where we use a colon instead of an index set if all
elements are considered. This notation will be used throughout this chapter.

The multiplexed and superimposed pilot schemes will be unified under the same framework.
Although no extra bandwidth is consumed with the superimposed pilot scheme, it is heavily influ-
enced by the interference from the unknown data symbols. To some extent this also happens with the
multiplexed pilot scheme because the delay (for the single-carrier system) or Doppler (for the OFDM
system) spread of the channel will introduce some mixing between the pilot symbols and the unknown
data symbols, but this mixing is much smaller than with the superimposed pilot scheme. For this rea-
son, we will mainly focus on the multiplexed pilot scheme in this section, and we will write a remark
on the superimposed pilot scheme from time to time. However, the expressions are basically the same
for both pilot insertion schemes.

In the ensuing part, we will first rewrite the earlier data models as a function of the pilot symbols.
Based on these data models, we will then discuss various channel estimation techniques and their
characteristics. Some simulation results will be given at the end of this section.

4.3.2 Channel Estimation Data Model
As already indicated, we focus mainly on multiplexed pilot schemes in this chapter. This means that we
consider time-multiplexed training for the single-carrier system and frequency-multiplexed training for
the OFDM system. Let us assume that the pilot symbols are grouped in G clusters, each of length P+ 1.
For the gth pilot cluster pg, suppose Pg , {Pg, . . . ,Pg+P} denotes the set of indices that contains all
the pilot positions, with Pg standing for its starting position. Hence, pg is related with the transmitted
symbol block a as pg , a{Pg}. Below, we will describe how to proceed for the two considered systems.

4.3.2.1 Single-Carrier System with CP
Because the time-domain channel matrix Hc is circularly banded with a band of length M (the discrete
delay spread) on and below the main diagonal, we can assign to the gth pilot cluster pg the observation
samples y{Og} whose indices are collected in the set

Og , {Pg+ `, . . . ,Pg+P+M− 1− `}, (4.11)

where ` is an integer design parameter determining the number of observation samples that we want
to take into account in our channel estimation. We will come back to this issue later on.

According to the input–output relationship in (4.5) and assuming that there is enough space in
between two nonzero pilot symbols from different pilot clusters, i.e., the minimal number of samples in
between two nonzero pilot symbols from different pilot clusters, denoted as1, satisfies1≥M− `− 1,
we can express y{Og} as

y{Og} =H
{Og,Pg}
c pg+H

{Og,Dg}
c dg+ z{Og}, (4.12)

where Dg represents the set of indices of the unknown data symbols that are present in y{Og}, and dg

collects those unknown data symbols present in y{Og}, i.e., dg , a{Dg}. The structure of the channel
matrices in (4.12) is illustrated in Fig. 4.1.
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FIGURE 4.1

The partitioning of the time-domain channel matrix Hc into H
{Og ,Pg}
c and H

{Og ,Dg}
c . The dark shaded areas

represent large values, whereas the white areas represent zeros.

Using the BEM expression in (4.9), we can now rewrite (4.12) as

y{Og} =

I−1∑
i=0

U
{Og,Og}

d,i C
{Og,Pg}

c,i pg+

I−1∑
i=0

U
{Og,Og}

d,i C
{Og,Dg}

c,i dg︸ ︷︷ ︸
ig

+z{Og}, (4.13)

where U
{Og,Og}

d,i is the submatrix of the diagonal matrix Ud,i consisting of the diagonal elements on the

positions Og, C
{Og,Pg}

c,i consists of the columns of C
{Og,:}
c,i corresponding to the positions of the pilot

symbols in pg, and C
{Og,Dg}

c,i consists of the columns of C
{Og,:}
c,i corresponding to the positions of the

unknown data symbols in dg. Note that C
{Og,Pg}

c,i and C
{Og,Dg}

c,i have the same structure as H
{Og,Pg}
c and

H
{Og,Dg}
c in Fig. 4.1.

The significance of ` becomes clearer from the definitions above. By adjusting the value of `, the
number of observation samples varies, and accordingly, the channel estimator can deal with different
amounts of information regarding the pilot symbols and the unknown data symbols. For instance, in

Ma, Giannakis, and Ohno (2003), ` is chosen as `=M− 1, so that Dg = ∅ and thus H
{Og,Dg}
c vanishes.

Moreover, under the assumption that P≥M− 1, we then have that Og = {Pg+M− 1, . . . ,Pg+P}
and thus y{Ok} contains the maximum number of received samples that depend on the pilot symbols
without any interference from the unknown data symbols. Taking ` larger than M− 1 degrades the
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performance but lowers the complexity. The largest value of ` is given by (P+M− 1)/2 (assume
P+M− 1 is even), which is the case where only a single observation sample per pilot cluster is
selected. Rousseaux, Leus, Stoica, and Moonen (2004) and Rousseaux, Leus, and Moonen (2006)
chose `= 0, which means that Og = {Pg, . . . ,Pg+P+M− 1} and thus y{Ok} contains the maximum
number of received samples that depend on both the pilot and the interfering unknown data symbols.
Taking ` smaller than 0 will not change the performance and only increases the complexity. Taking the
earlier condition 1≥M− `− 1 into account, which is required for (4.12) to hold, the smallest value
of ` is given by max{0,M−1− 1}. In the sequel, we will follow an approach similar to the approach
of Leus & van der Veen (2005), and let ` assume an arbitrary integer value, which we bound by
max{0,M−1− 1} ≤ `≤ (P+M− 1)/2.

Rewriting (4.13) as a function of the BEM coefficients c= (cT
0 · · · cT

I−1)
T , we obtain

y{Og} = Agc+ ig+ z{Og}, (4.14)

with

Ag ,
(

U
{Og,Og}

d,0 P
{Og,Cg}
c,g · · · U

{Og,Og}

d,I−1 P
{Og,Cg}
c,g

)
, (4.15)

where Pc,g is a circulant matrix with (pT
g 01×(K−P−1))

T on its first column, and Cg is the set of column

indices of Pc,g that are hit by every ci, i.e., Cg , {Pg, . . . ,Pg+M− 1}. Note that Cg has the same
starting point as Pg, but it has length M instead of P+ 1. To derive (4.15), we have made use of the

commutativity of the circular convolution, meaning that C
{:,Pg}

c,i pg = P
{:,Cg}
c,g ci.

Stacking the results obtained in (4.14) for all G pilot clusters, y{O} , (y{O0}T · · · y{OG−1}T)T , where
the index set O is given by O , {O0, . . . ,OG−1}, we obtain

y{O} = Ac+ i+ z{O}, (4.16)

where i and z{O} are similarly defined as y{O}, and

A, (AT
0 · · · AT

G−1)
T

=


U{O0,O0}

d,0 P{O0,C0}
c,0 · · · U{O0,O0}

d,I−1 P{O0,C0}
c,0

...
...

U
{OG−1,OG−1}

d,0 P
{OG−1,CG−1}

c,G−1 · · · U
{OG−1,OG−1}

d,I−1 P
{OG−1,CG−1}

c,G−1

 . (4.17)

4.3.2.2 OFDM System with CP
In contrast to the time-domain channel matrix Hc, the frequency-domain channel matrix Hd basically is
a full matrix, but with most of its power located on or close to the main diagonal, or in other words, the
matrix Hd is approximately circularly banded. There is only one case where the matrix Hd is exactly
circularly banded, and that is when the (C)CE-BEM is used to model the channel. In that case, Hd will
have I nonzero diagonals, where I− 1 is the order of the (C)CE-BEM. However, the problem with
this approach is that the (C)CE-BEM does not provide a good fit to the actual channel (Zemen &
Mecklenbräuker, 2005; Tang, 2007).
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Due to the fact that Hd is a full matrix, it is less obvious to choose which received samples to use
for channel estimation. However, similar to Section 4.3.2.1, if we assume that Hd is approximately
circularly banded with a band of length D (the significant discrete Doppler spread) centered around the
main diagonal (assume D− 1 is even), we can assign to the gth pilot cluster pg the observation samples
y{Og} whose indices are collected in the set

Og , {Pg− (D− 1)/2+ `, . . . ,Pg+P+ (D− 1)/2− `}, (4.18)

where ` is again an integer design parameter that controls the number of observation samples that
will be used for channel estimation. Note that in contrast to other chapters, we use D here to indicate
the double-sided discrete Doppler spread instead of the single-sided one, in order to better reflect the
duality between M for the single-carrier system with CP and D for the OFDM system with CP.

According to the input–output relationship in (4.4), we can express y{Og} as

y{Og} =H
{Og,P}
d p+H

{Og,D}
d d+ z{Og}. (4.19)

The difference with (4.12) for the time-domain case is that now all the pilot and unknown data symbols
are present in y{Og}, due to the fact that Hd is basically a full matrix. Moreover, there is no special con-
straint on 1, which represents the minimal number of samples in between two nonzero pilot symbols
from different pilot clusters. The structure of the channel matrices in (4.19) is illustrated in Fig. 4.2.

,

2
D +1

,

d

P + 1

P + D − 2

pp0

Hd

Hd
y −1

y

y 0

p −1

FIGURE 4.2

The partitioning of the frequency-domain channel matrix Hd into H
{Og ,P}
d and H

{Og ,D}
d . The dark shaded

areas represent large values, whereas the light shaded areas represent small values.
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Using the BEM expression in (4.10), we can now rewrite (4.19) as

y{Og} =

I−1∑
i=0

U
{Og,P}
c,i C{P,P}

d,i p+
I−1∑
i=0

U
{Og,D}
c,i C{D ,D}

d,i d︸ ︷︷ ︸
ig

+z{Og}, (4.20)

where U
{Og,P}
c,i consists of the columns of U

{Og,:}
c,i corresponding to the positions of the pilot symbols

in p, U
{Og,D}
c,i consists of the columns of U

{Og,:}
c,i corresponding to the positions of the unknown data

symbols in d, and finally C{P ,P}
d,i and C{D ,D}

d,i are the submatrices of the diagonal matrix Cd,i consisting

of the diagonal elements on the positions P and D , respectively. Note that U
{Og,P}
c,i and U

{Og,D}
c,i have

the same structure as H
{Og,P}
d and H

{Og,D}
d in Fig. 4.2.

Similarly to the time-domain case, the relation of ` with the significant Doppler spread D will
indicate how much significant interference from the unknown data symbols we will take into account.
For instance, if we take `= (D− 1)/2, we take no significant interference into account. Under the
assumption that P≥ D− 1, y{Og} then contains the maximum number of received samples that depend
on the pilot symbols without any significant interference from the unknown data symbols. However,
this generally does not mean that the interference term, i.e., the second term in (4.20), vanishes. This
will only be true when a (C)CE-BEM is used and D= I, as considered in Kannu & Schniter (2005),
but as already mentioned earlier, the (C)CE-BEM is not a very accurate model. Taking ` larger than
(D− 1)/2 lowers the complexity as in the time-domain case but might not necessarily degrade the
performance. Anyway, the largest value of ` is given by (P+D− 1)/2 (assume P+D− 1 is even),
which is the case where only a single observation sample per pilot cluster is selected. If we take
`= 0, y{Og} contains the maximum number of received samples that depend on both the pilot symbols
and the significantly interfering unknown data symbols. Note that in the time-invariant case, taking
`= (D− 1)/2 or `= 0 is the same because D= 1, which then leads to the traditional time-invariant
OFDM channel estimation procedure presented for instance in Negi & Cioffi (1998). Taking ` smaller
than zero increases the complexity as in the time-domain case, but might change the performance.
Hence, we will not put any lower bound on ` yet. To conclude, we let ` assume an arbitrary integer
value, which we bound by `≤ (P+D− 1)/2.

Rewriting (4.20) as a function of the BEM coefficients c= (cT
0 · · · cT

I−1)
T , we can obtain

y{Og} = Agc+ ig+ z{Og}, (4.21)

with

Ag ,
(

U
{Og,P}
c,0 · · · U

{Og,P}
c,I−1

)(
II ⊗ diag{p}V{P,:}

K

)
, (4.22)

where we have used that C{P ,P}
d,i p= diag{p}

√
KW{P ,:}

K (cT
i 01×(K−M))

T
= diag{p}V{P ,:}

K ci, with VK

the first M columns of the DFT matrix
√

KWK .
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Stacking the results obtained in (4.21) for all G pilot clusters, y{O} , (y{O0}T · · · y{OG−1}T)T , where
the set O is given by O , {O0, . . . ,OG−1}, we obtain

y{O} = Ac+ i+ z{O}, (4.23)

where i and z{O} are similarly defined as y{O}, and

A, (AT
0 · · · AT

G−1)
T
= AcAd, (4.24)

with

Ac ,


U{O0,P}

c,0 · · · U{O0,P}
c,I−1

...
...

U
{OG−1,P}
c,0 · · · U

{OG−1,P}
c,I−1


=W{O,:}

K (Ud,0 · · · Ud,I−1)
(

II ⊗W{P,:}H
K

)
, (4.25)

and

Ad , II ⊗ diag{p}VK
{P,:}. (4.26)

Remark 4.1 For the superimposed pilot scheme, the channel estimation data model can be derived in a simi-
lar way. However, since the pilot and unknown data symbols overlap in that case, i.e., a= p+d, we basically
have G= 1 and P0 =D0 = O0 =P =D = O = {0, . . . ,K− 1}. As a result, in (4.12) or (4.19) we then obtain

H{O0,P0}
c =H{O0,D0}

c =Hc or H{O0,P}
d =H{O0,D}

d =Hd, respectively. In spite of these differences, we can still
show that the data model for the superimposed pilot scheme takes on a form that is similar to (4.16) or (4.23).

4.3.3 Channel Estimators
As is clear from the previous section, whether we work in the time or frequency domain, whether
multiplexed or superimposed pilot symbols are used, the data model for channel estimation can always
be expressed as a mixture of a useful part resulting from the pilot symbols, an interference part resulting
from the interfering unknown data symbols, and a noise part:

y{O} = Ac+ i(c)+ z{O}, (4.27)

where we have made the dependence of the interference term i on the unknown BEM coefficients
c explicit. Without loss of generality, we will present channel estimators based on the generic data
model in (4.27). However, the inherent difference between the single-carrier channel estimators and
the OFDM channel estimators will be pointed out from time to time.

We will focus on three channel estimators in this section: the linear minimum mean-squared error
(LMMSE) estimator, the least squares (LS) estimator, and the best linear unbiased estimator (BLUE).
All these estimators estimate the BEM coefficients c as

ĉ= Fy{O},

where F is the respective linear estimator. Whereas the LMMSE estimator relies on the statistics of c,
the LS estimator and the BLUE treat c as a deterministic variable. The unknown data symbols d and
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the noise z are always assumed to be stochastic and mutually uncorrelated, i.e., E{dzH
} = 0. For every

estimator, we can then estimate the BEM channel vector (U⊗ IM)c in (4.8) as (U⊗ IM)ĉ, and we can
compute the related mean-squared error (MSE) as

MSE, Ec,d,z{O}

{
‖(U⊗ IM)ĉ− (U⊗ IM)c‖2

}
= tr

{
(U⊗ IM)Ec,d,z{O} {(ĉ− c)(ĉ− c)H}(U⊗ IM)

H
}

= tr
{
Ec,d,z{O}

{
(ĉ− c)(ĉ− c)H

}}
, (4.28)

where tr{·} denotes the trace of a matrix and the last equality is due to the fact that we have designed
U with orthonormal columns (cf. (4.7)). Note that this MSE does not include the modeling error of
the BEM.

The performance of each channel estimator is sensitive to the design parameter `. Taking a larger `,
we basically take less interference from unknown data symbols into account, which could improve our
estimate. But on the other hand, increasing ` reduces the number of observation symbols and makes A
a fatter matrix, which can be detrimental to the channel estimator.

4.3.3.1 The LMMSE Estimator
The LMMSE estimator treats c as a stochastic variable. We further assume it is uncorrelated with the
unknown data symbols and the noise, i.e., E{czH

} = 0 and E{cdH
} = 0. The LMMSE estimator is the

linear filter F that minimizes the MSE between c and ĉ:

FLMMSE , arg min
F

Ec,d,z

{
‖Fy{O}− c‖2

}
.

Because the BEM coefficients c, the unknown data symbols d, and the noise z are all mutually
uncorrelated, the LMMSE estimator can be derived as (Tang, Cannizzaro, Banelli, & Leus, 2007)

FLMMSE = RcAH(ARcAH
+Ri+R{O}z )−1, (4.29)

where the correlation matrices Rc, Ri, and R{O}z are given by Rc , Ec{ccH
}, Ri , Ec,d{iiH}, and R{O}z ,

Ez{z{O}z{O}H}. The computation of these correlation matrices in the time and frequency domains is
given in Tang (2007).

Note that although (4.29) appears similar to the classical LMMSE estimator (Kay, 1993), it has
the extra task to process the interference term i, which depends on c itself. For this purpose, the pro-
posed LMMSE estimator treats i as a random vector assuming the statistics of c and d. A drawback
of this approach is that the statistics of c are difficult to determine and not always reliable in prac-
tice. For instance, the Doppler spread could only be roughly known or the assumed Doppler spectrum
could deviate from the actual shape. In such cases, the proposed LMMSE estimator will function
suboptimally.

The MSE obtained with the LMMSE estimator (cf. (4.28)) can be expressed as

MSELMMSE = tr
{
(AH(Ri+R{O}z )−1A+R−1

c )−1
}

. (4.30)
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4.3.3.2 The Least-Squares Estimator
In contrast to the LMMSE estimator, the LS estimator treats c as a deterministic variable. It is the linear
filter F that minimizes the squared error between y{O} and Aĉ:

FLS , arg min
F
‖y{O}−AFy{O}‖2.

The solution is well known (Kay, 1993) and given by the pseudo-inverse of A, i.e.,

FLS = A#.

The LS estimator is the most robust estimator, in the sense that it requires no knowledge about the
statistics of the BEM coefficients and the noise. This eliminates the risk of a mismatched knowledge.
However, the LS estimator will perform poorly when the interference and/or the noise are prominent.
More fundamentally, the conditioning of the matrix A plays a crucial role in the channel MSE of the
LS estimator. Using (4.28), this channel MSE can be computed as

MSELS = Ec,d,z

{
tr
{

A#(i+ z{O})(i+ z{O})HA#H
}}

= tr
{

A#Ec,d,z

{
(i+ z{O})(i+ z{O})H

}
A#H

}
= tr

{
A#(Ri+R{O}z )A#H

}
. (4.31)

4.3.3.3 An Iterative BLUE
The BLUE yields a compromise between the LMMSE and LS estimators: it treats c as a deterministic
variable, thus avoiding a possible error in calculating its statistics; at the same time, it leverages the
statistics of the interference and the noise, such that they can be better suppressed than by the LS
estimator. Simulation results show that the BLUE is able to yield a performance close to that of the
LMMSE estimator, even if the latter uses perfect statistical knowledge.

The BLUE is the linear filter F that minimizes the MSE between c and ĉ subject to the condition
that c is unbiased:

FBLUE , arg min
F

Ed,z

{
‖Fy{O}− c‖2

}
, s.t. Ed,z

{
Fy{O}

}
= c.

The solution can be computed as in Kay (1993) by combining the interference i and the noise z{O} to a
single disturbance term:

FBLUE =
(
AHR̃−1

δ (c)A
)−1AHR̃−1

δ (c), (4.32)

where R̃δ(c) denotes the correlation matrix of the disturbance with c considered as a deterministic
variable:

R̃δ(c), R̃i(c)+R{O}z ,

with R̃i(c), Ed{iiH}. Note here that we do not take an average over c as in the LMMSE case, which is
also the reason why we use a different notation. The calculation of R̃δ(c) in both the time and frequency
domains can be found in Tang (2007).

The problem with (4.32) is that it cannot be calculated in closed form since due to the presence of
R̃δ(c), its calculation requires the knowledge of c itself. As a remedy, we apply a recursive approach.
Suppose that at the nth iteration, an estimate of c has been obtained, which is denoted as ĉ(n)BLUE. Then
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we utilize this temporary estimate to update the correlation matrix R̃δ(c), which in turn is used to
produce the BLUE for the subsequent iteration, etc.:

F(n+1)
BLUE =

(
AHR̃−1

δ (ĉ(n)BLUE)A
)−1AHR̃−1

δ (ĉ(n)BLUE),

ĉ(n+1)
BLUE = F(n+1)

BLUEy{O}.

Note that a similar idea is adopted in Ghogho & Swami (2004) though in a different context. To
initialize the iteration, we can set ĉ(0)BLUE = 0, which results in the following expression for the first
iteration:

F(1)BLUE =
(
AHR{O}−1

z A
)−1AHR{O}−1

z ,

ĉ(1)BLUE = F(1)BLUEy{O}.

The above expression actually corresponds to the LS estimator but weighted with the noise covariance
matrix. Under the Gaussian noise assumption, this estimator is the maximum likelihood estimator (Kay,
1993) that is obtained by ignoring the interference i.

Assuming that ĉ(n)BLUE will approach the theoretical BLUE ĉBLUE in (4.32), we can use (4.28) to
compute an estimate of the channel MSE obtained by the iterative BLUE as

MSEBLUE = Ec,d,z{O}

{
tr

{
FBLUE

(
i+ z{O}

)(
i+ z{O}

)H
FH

BLUE

}}
= Ec

{
tr
{

FBLUER̃δ(c)FH
BLUE

}}
= Ec

{
tr
{
(AHR̃−1

δ (c)A)−1
}}

. (4.33)

It must be remarked that the channel MSE of the BLUE is difficult to evaluate in closed form because
the parameter c which is contained in R̃δ(c)−1 has to be averaged out. This forces us to resort to the
Monte Carlo method to evaluate (4.33).

4.3.3.4 Optimization of `
It is clear that the channel MSE of every estimator depends on ` (cf. (4.30), (4.31), and (4.33)). In
this section, we will seek the optimal `, or equivalently, the optimal number of observation samples
used for channel estimation. With optimal ` we mean the ` that minimizes the channel MSE given
in (4.30), (4.31), and (4.33) for the LMMSE estimator, the LS estimator, and the BLUE, respectively.
A closed-form solution is, however, hard to obtain, especially for the BLUE. Alternatively, we can
resort to an exhaustive search approach, which is feasible because the range of possible values for
` is limited. To be more specific, we have seen in Section 4.3.2 that the limits for ` are basically
given by max{0,M−1− 1} ≤ `≤ (P+M− 1)/2 and `≤ (P+D− 1)/2 for the single-carrier and
OFDM system, respectively. Here, M stands for the discrete delay spread, D for the significant discrete
Doppler spread, and1 for the minimal number of samples in between two nonzero pilot symbols from
different pilot clusters. In addition to these bounds, there also exist some other bounds for `. First of all,
we desire the matrix A to be of full column-rank, which is essential for the channel estimators to have a
good performance in the absence of interference and noise. This means that `≤ (P+M)/2−MI/(2G)
and `≤ (P+D)/2−MI/(2G) for the single-carrier and OFDM system, respectively. Second, we do
not want the observation samples related to the nonzero pilot symbols from different pilot clusters
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to overlap. With δ denoting the minimal number of samples in between two pilot clusters (note that
δ ≤1), this means that `≥ (M− δ− 1)/2 and `≥ (D− δ− 1)/2 for the single-carrier and OFDM
system, respectively.

Fortunately, even the exhaustive search may be avoided as will become evident from the simula-
tions, where the MSE-versus-` curves for each channel estimator exhibit a monotonous track. In partic-
ular, the LS estimator yields the best performance when ` is maximized, whereas the LMMSE estimator
and the BLUE perform best when ` is minimized. This can be explained as follows. As we already
indicated before, there are two opposite effects. On one hand, increasing ` reduces the amount of inter-
ference from the unknown data symbols and hence improves the channel estimate. On the other hand,
increasing ` makes A a fatter matrix and deteriorates the channel estimate. For the LS estimator, the
first effect plays the most important role because the LS estimator is not good at suppressing this inter-
ference due to a lack of statistical knowledge. However, this interference poses no serious problems
for the LMMSE estimator and the BLUE, since both of them can take the interference into account.
Hence, for these estimators the second effect is stronger and thus ` should be as small as possible.

4.3.4 Channel Identifiability
In this chapter, we define channel identifiability in terms of the rank condition of the pilot-related
matrix A. It is obvious that for the LS estimator and the BLUE, A should be of full column-rank,
i.e., rank{A} =MI, where MI is the total number of BEM coefficients to be estimated. If A is not
full column-rank, the channel cannot be correctly recovered even in an interference- and noise-free
situation. Although not directly visible, the full column-rank condition for A is also significant for the
performance of the LMMSE estimator. In this section, we will describe several sufficient conditions to
obtain a full column-rank A.

4.3.4.1 Channel Identifiability for Single-Carrier System
To discuss channel identifiability for the single-carrier system, we will adopt the following assumption
on the pilot structure:

Assumption 4.1 The pilot structure satisfies the following conditions:

(C1) The length of each pilot cluster P+ 1 satisfies P+ 1≥ 2`+ 1.
(C2) Inside each pilot cluster, either the first or the last ` pilots are zero.
(C3) Every pilot cluster has at least one nonzero pilot in between the first and last ` pilots.
(C4) The nonzero pilot symbols from different pilot clusters should be separated by at least M− 1 symbols.

The structure of a pilot cluster satisfying conditions (C1), (C2), and (C3) is depicted in Fig. 4.3. Con-
dition (C4) ensures that the observation samples related to a pilot cluster are not influenced by nonzero
pilot symbols from another pilot cluster. Actually, condition (C4) corresponds to the earlier condition
1≥M− `− 1 required for (4.12) to hold.

We can now state the following theorem:

Theorem 4.1 Under Assumption 4.1, the channel is identifiable if the number of pilot clusters G is greater than
or equal to the BEM length, i.e.,

G≥ I.
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P + 1

P + 1

≥ 1

≥ 1

FIGURE 4.3

The two possible cases of the proposed pilot structure: the white boxes stand for the area where zero pilot
symbols are located; the black boxes for the area where at least one nonzero pilot symbol is located; and the
gray boxes for the area where arbitrary pilot symbols (zero or nonzero) are located.

Ud

G

I

, }
Pc

, }

Ud
, }
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, }+ 1

−1 +1
+ 1 + 1 + 1

FIGURE 4.4

Changing a stack of banded matrices to a block banded matrix by row- and column-interleaving.

We only give a sketch of the proof of Theorem 4.1; a full detailed proof can be found in Tang

(2007). Under (C1), (C2), (C3), and (C4), the (P+M− 2`)×M matrix P
{Og,Cg}
c,g used in (4.17) is a tall

banded matrix with zeros above (below) the diagonal starting (ending) at the top left (bottom right)
corner. From (4.17), the matrix A is a stack of G by I of such tall banded matrices, each one multiplied
with a diagonal matrix, which does not change the tall banded structure. This is illustrated in the left
part of Fig. 4.4. Let us now change the order of the rows and columns of A as illustrated in the right
part of Fig. 4.4. Such a permutation does not affect the column-rank condition, and it enables us to
obtain a new matrix that has a block-wise banded structure with blocks of size G× I. It is then easy to
prove that all the G× I blocks on the first (last) nonzero block diagonal of the permuted matrix have
full column-rank, and this for all BEMs that have been considered in literature. This means that A has
full column-rank.

Some remarks regarding Theorem 4.1 are now in order.

Remark 4.2 Assumption 4.1 is only sufficient for a full column-rank A. However, it ensures that Theorem 4.1
holds for an arbitrary BEM and pilot choice. When P+ 1< 2`+ 1, nonzero entries will have to emerge in the
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upper and lower diagonals of P
{Og,Cg}
c,g , and thus also in the upper and lower block diagonals of the permuted

version of A (see Fig. 4.4). As a result, the proof does not hold anymore and the full column-rank condition of A
cannot be guaranteed. It will depend on the choice of the BEM and the pilot symbols.

Remark 4.3 Ma, Giannakis, & Ohno (2003) and Kannu & Schniter (2005), propose a special pilot structure where
the G pilot clusters are equidistant and every cluster consists of a nonzero pilot symbol surrounded by M− 1 zeros
to the left and right, i.e., P+ 1= 2M− 1. We borrow the term “time-domain Kronecker delta (TDKD) structure”
from Kannu & Schniter (2005) to describe this special pilot structure. The TDKD structure has been proven to be
optimal in the MSE and capacity sense provided the (C)CE-BEM is used for channel modeling (Ma, Giannakis,
& Ohno, 2003; Kannu & Schniter, 2005). The TDKD structure is a special case of the pilot structure defined by
Assumption 4.1 with P+ 1= 2M− 1 and `=M− 1. In that case, we know from Theorem 4.1 that the channel
is identifiable if G≥ I, as also argued in Ma, Giannakis, & Ohno (2003) and Kannu & Schniter (2005) for the
(C)CE-BEM.

4.3.4.2 Channel Identifiability for OFDM System
For OFDM systems, the full column-rank condition of A is much harder to analyze, due to the fact that
Hd is basically a full matrix. To simplify the analysis, we will adopt a specific pilot scheme here.

Assumption 4.2 The pilot structure satisfies the following conditions:

(C1) The length of each pilot cluster P+ 1 satisfies P+ 1≥ 1.
(C2) Every pilot cluster has one nonzero pilot.
(C3) The nonzero pilots are equispaced.

Remark 4.4 In Kannu & Schniter (2005), the counterpart of the TDKD structure in the frequency domain is
proposed, which is labeled the “frequency domain Kronecker delta (FDKD) structure.” In the FDKD structure,
the G pilot clusters are equidistant and every cluster consists of a nonzero pilot symbol surrounded by D− 1 zeros
to the left and right, i.e., P+ 1= 2D− 1, where D is the significant discrete Doppler spread. The FDKD structure
is optimal in terms of the MSE if the (C)CE-BEM is used for channel modeling (Kannu & Schniter, 2005). The
FDKD structure fits into Assumption 4.2 with P+ 1= 2D− 1.

Under Assumption 4.2, the full column-rank condition for the corresponding matrix A will be
independent of the choice of the BEM and the pilot symbols, as we will show next. According to
Assumption 4.2, the gth pilot cluster pg can be expressed as

pg = (01×L pg 01×R)
T ,

where pg stands for the nonzero pilot symbol, and L and R are the number of zeros left and right of this
nonzero pilot. The total pilot vector p can therefore be written as

p= p⊗ (01×L 1 01×R)
T ,

where p , (p0 . . . pG−1)
T contains all the G nonzero pilot symbols. The positions of these nonzero

pilot symbols are collected in

P , {µ,µ+K/G, . . . ,µ+K(G− 1)/G}, (4.34)

with µ denoting the position of the first nonzero pilot symbol.
With the help of the notations p and P , and taking the zero pilot symbols into account, we can now

rewrite the matrix A in (4.24) as

A= AcAd,
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with

Ac ,W{O,:}
K (Ud,0 . . . Ud,I−1)

(
II ⊗W{P,:}H

K

)
, (4.35)

Ad , II ⊗ diag{p}V{P,:}
K . (4.36)

In the above equations, the columns of Ac and the rows of Ad corresponding to the positions of the
zero pilot symbols have been discarded in Ac and Ad, respectively, which obviously does not affect the
result.

Let us now examine the matrix Ad. First of all, V{P ,:}
K consists of the first M columns and G

equidistant rows of the DFT matrix
√

KWK . Hence, V{P ,:}
K is a G×M Vandermonde matrix with rank

equal to min{G,M}. Furthermore, diag{p} is a diagonal matrix with the nonzero pilot symbols on its
diagonal and as such will not change the rank of a matrix if multiplied with it. Hence, we can state the
following lemma.

Lemma 4.1 Under Assumption 4.2, the GI×MI matrix Ad depends on the pilot symbols but not on the BEM
and its rank is given by

rank{Ad} =min{G,M}I. (4.37)

As a result, if G≥M, the rank of Ad is equal to MI.
To examine the matrix Ac, let us introduce an additional assumption.

Assumption 4.3 All the received samples will be used for channel estimation, i.e., O = {0,1, . . . ,K− 1}.

This means that W{O ,:}
K =WK , which can thus be omitted when analyzing the rank of Ac. Due to (4.34),

the matrix W{P ,:}H
K can be written as

W{P,:}H
K =

√
G/K(1 e

√
−12πµG/K e

√
−12πµ2G/K

· · · e
√
−12πµ(K/G−1)G/K)T (4.38)

⊗ diag{(1 e
√
−12πµ/K e

√
−12πµ2/K

· · · e
√
−12πµ(G−1)/K)T }WH

G . (4.39)

It is easy to show that this Kronecker structure of W{P ,:}H
K relates the rank of Ac to the rank of


Ud,0,0 · · · Ud,I−1,0

...
...

Ud,0,K/G−1 · · · Ud,I−1,K/G−1

 , (4.40)

where the G×G matrix Ud,i,k is the diagonal submatrix of Ud,i with rows and columns going from kG
to (k+ 1)G− 1. Permutating the rows and columns, the above matrix can be transformed into

U0

. . .

UG−1

 , (4.41)
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where the K/G× I matrix Ug selects a set of K/G equidistant rows from U starting at g. For all BEMs
that have been considered in the literature, the matrix Ug has a rank equal to min{K/G, I}. So we can
formulate the following lemma.

Lemma 4.2 Under Assumptions 4.2 and 4.3, the K×GI matrix Ac depends on the BEM but not on the pilot
symbols and its rank is given by

rank{Ac} =min{K/G, I}G. (4.42)

Hence, if K/G≥ I, the rank of Ac is equal to GI.
For an m× k matrix A and a k× n matrix B, the rank inequality reads (Horn & Johnson, 1999)

rank{A}+ rank{B}− k ≤ rank{AB} ≤min{rank{A}, rank{B}}. (4.43)

Applying this rank inequality to (4.37) and (4.42), we obtain the following theorem.

Theorem 4.2 Under Assumptions 4.2 and 4.3, the channel is identifiable if the number of pilot clusters G satisfies

M ≤ G≤ K/I. (4.44)

A few remarks are in order at this stage.

Remark 4.5 One can observe the link between Theorem 4.2 and the channel identifiability for a time-invariant
channel. The latter can be viewed as a special case of the time-varying channel with I = 1. As per (4.44), in this
case, we only require that the total number of pilot symbols should be larger than or equal to the channel length,
which is consistent with the channel identifiability condition for time-invariant channels as given in Negi & Cioffi
(1998).

Remark 4.6 Theorem 4.2 is a sufficient condition for an arbitrary choice of the nonzero pilot symbols. To under-
stand this, it is interesting to study an extreme case where the whole block is occupied by nonzero pilot symbols.
We can view such a pilot structure as a special case of Assumption 4.2 with P= 0 and G= K. In this case, the sec-
ond inequality in (4.44) can only be satisfied if I = 1. Because I > 1 for time-varying channels, the column-rank
of the matrix A will therefore not necessarily be full, and will depend on the specific values of the pilot symbols.

4.3.5 Simulation Results
In this section, we will show some simulation results illustrating the methods proposed in the previous
sections. We only consider time-varying channels that follow Jakes’ Doppler spectrum (Jakes, 1974).
The methods given in Zheng & Xiao (2003) are used to generate these channels. Defining the normal-
ized Doppler spread as ξmax = νTs, where ν is the Doppler spread and Ts is the sampling period, we
will concentrate on two normalized Doppler spreads: (1) ξmax = 0.0008 and (2) ξmax = 0.004.

4.3.5.1 Results for the OFDM System
For the OFDM system, we set the BEM length to I = 3. Further, we assume the channel to be an
FIR filter with M = 4 taps, which are independent Gaussian random variables with zero mean and a
uniform power delay profile, i.e., E{|h[n,m]|2} = 1/M. In summary, we can model the time-varying
channel with MI = 12 BEM coefficients.

To examine the proposed channel estimation algorithms, we consider an OFDM system with
K = 64 subcarriers. We adopt an FDKD structure with G= 8 equidistant pilot clusters, each containing
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P+ 1= 3 pilot symbols. One nonzero pilot symbol is positioned in the middle of the cluster with one
zero pilot on both sides, i.e., the significant discrete Doppler spread D is assumed to be D= 2. Note
that roughly 37.5% of the subcarriers are devoted to training.

For the following simulations, we will use the DKL-BEM when constructing the LMMSE estimator
because both of them rely on knowledge of the channel statistics. However, for both the DKL-BEM and
the LMMSE estimator, we will allow for a mismatch of the statistics by assuming a fixed ξmax = 0.002
for all the Doppler spreads under test. For the LS estimator and the BLUE, we will consider the
(O)CE-BEM because both channel estimators and the BEM are independent of the channel statistics.
In addition, we will also compare our results with the channel estimation method for the (C)CE-BEM
presented in Kannu & Schniter (2005). Note that this method resembles our proposed LMMSE esti-
mator (without mismatch) but uses a data model that is only applicable to the (C)CE-BEM, i.e., the
frequency-domain channel matrix is viewed as strictly circularly banded.

We first study the effect of the parameter ` on the channel MSE of the various channel estimators.
Note that we only consider the channel MSE, omitting the BEM modeling error at this point. We have
mentioned in the previous section that ` is upper-bounded by the minimum of (P+D− 1)/2= 1.5 and
(P+D)/2−MI/(2G)= 1.25, and lower-bounded by (D− δ− 1)/2=−2, because δ = 5. For values
of ` in this range, we evaluate the channel MSE of the LMMSE estimator (4.30) for SNR= 10, 20, 30,
and 40 dB, and depict the results in Fig. 4.5. We observe that the effect of ` is very limited, but one can
observe a slight decrease in channel MSE if ` decreases. The reason why we only see a limited effect
is because of the mismatch in Doppler spread. If the exact Doppler spread was known, the influence of
` would be more pronounced. In any case, we choose `=−2 as the optimal value, which implies that
the whole OFDM symbol will be invoked for channel estimation.
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FIGURE 4.5

MSE versus ` for the LMMSE estimator in the OFDM case.
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MSE versus ` for the LS estimator in the OFDM case.
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FIGURE 4.7

MSE versus ` for the BLUE in the OFDM case.

The results for the LS estimator are plotted in Fig. 4.6, where we observe that ` must be chosen as
large as possible, i.e., `= 1.

For the BLUE in Fig. 4.7, a smaller ` always yields a lower channel MSE just as for the LMMSE
estimator and we also take `=−2. Note though that for complexity reasons, one has to be careful
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FIGURE 4.8

True channel NMSE versus SNR for different channel estimators. (a) ξmax = 0.0008, (b) ξmax = 0.004.

by taking ` too small because the BLUE has to be computed recursively and the procedure must be
repeated for every OFDM symbol (the LMMSE estimator is in essence time-invariant and can thus be
precomputed and stored off-line). A smaller ` often requires more iterations to reach convergence, and
during each iteration, it requires a larger computational effort because more observation samples have
to be processed.

Having set `=−2 for the LMMSE estimator, `= 1 for the LS estimator, and `=−2 for the BLUE,
we now inspect their performance in terms of the true normalized mean squared error (NMSE), which
can be defined as

NMSE,
1

K
Eh

{
‖h− (U⊗ IM)ĉ‖2

}
. (4.45)

Note that the NMSE defined above explicitly takes the BEM modeling error into account. This is
different from the channel MSE defined in (4.28), which merely indicates how close the estimated
channel is to the best possible BEM fit. In Fig. 4.8, we depict the NMSE performance resulting
from the LMMSE estimator based on a DKL-BEM, the LS estimator based on an (O)CE-BEM, and
the BLUE based on an (O)CE-BEM. These results are compared with the LMMSE estimator that
uses the (C)CE-BEM, which is proposed in Kannu & Schniter (2005). This estimator is different
from the proposed LMMSE estimator because when adopting the (C)CE-BEM with D= I = 3, the
frequency-domain channel matrix is strictly circularly banded and hence, the resulting LMMSE
estimator cannot take the data-induced interference into account in the estimator design.
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From Fig. 4.8, we can see that the NMSE performance of the LMMSE estimator based on the
DKL-BEM is considerably worse if the channel varies faster. Recall that when constructing the DKL-
BEM as well as the LMMSE estimator, we have assumed ξmax = 0.002 to emulate a mismatch of the
channel statistics. The performance degradation suggests that underestimating the Doppler spread is
more harmful than overestimating it. In contrast, the BLUE based on the (O)CE-BEM requires no
knowledge of the channel statistics, and therefore exhibits a robust performance. We can see that its
performance is quite close to the Cramer-Rao bound (CRB), whose derivation can be found in Tang,
Cannizzaro, Banelli, & Leus (2007). In contrast, the LS estimator, although assuming no statistical
knowledge at all, suffers from an inferior performance. However, it is still better than the LMMSE
estimator based on the (C)CE-BEM (Kannu & Schniter, 2005) because the latter inherits a very large
BEM modeling error.

4.3.5.2 Results for the Single-Carrier System
For the single-carrier system, we set the BEM length to I = 5. Furthermore, we assume the channel to
be an FIR filter with M = 6 taps, which are independent Gaussian random variables with zero mean
and an exponential power delay profile, i.e., E{|h[n,m]|2} = c · e−m/10, for m= 0,1, . . . ,M− 1, where
c denotes a normalization constant. So we can model the time-varying channel with MI = 30 BEM
coefficients.

We consider a data block of length K = 256, out of which 55 symbols are reserved for pilots.
The pilot symbols are grouped in G= 5 clusters, each cluster containing P+ 1= 11 pilots, so that the
bandwidth efficiency is about 80%. In case Assumption 4.1 is applicable, we construct the pilot clusters
accordingly, where in Fig. 4.3 the gray boxes are filled with zero pilots, and the black boxes are filled
with nonzero pilots that are randomly picked constant-modulus symbols with the modulus chosen in
such a way that the average pilot symbol power equals the data symbol power. We further take G≥ I
as indicated in Theorem 4.1. In case Assumption 4.1 is not applicable, we let all the pilot symbols take
randomly picked constant-modulus symbols with the same modulus as the data symbols.

We first examine the effect of the parameter ` on the LMMSE estimator. As in the OFDM
case, we use the DKL-BEM to approximate the time-varying channel. Both the DKL-BEM and
the LMMSE estimator are based on the assumption of ξmax = 0.002 for both Doppler spreads
under consideration. We know that ` is upper-bounded by the minimum of (P+M− 1)/2= 7.5
and (P+M)/2−MI/(2G)= 5 and lower-bounded by the maximum of max{0,M−1− 1} = 0 and
(M− δ− 1)/2=−17.5 because1≥ 40 and δ = 40. Hence, we look at the performance for `= 0,3,5,
and depict the results in Fig. 4.9. It can be seen that a smaller ` leads to an improved performance
although the improvement is not very significant, as for the OFDM system. The reason is again the
mismatch in Doppler spread as well as the fact that the exponential power delay profile limits the
spread of the pilot power over multiple observation samples.

We carry out the same simulation for the LS estimator, which is based on an (O)CE-BEM. A
much more pronounced performance discrepancy can be observed from Fig. 4.10. The LS estimator
only functions with the largest `. In that case, the observation samples only depend on the pilot sym-
bols, which is possible in the time domain where the channel matrix is strictly circularly banded. For
other values of `, data-induced interference emerges, and the LS estimator suffers from a high noise
floor.
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FIGURE 4.9

Performance of the LMMSE estimator in the single-carrier case.
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Performance of the LS estimator in the single-carrier case.
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Performance of the BLUE in the single-carrier case.

The BLUE is also based on the (O)CE-BEM, and its behavior is analogous to that of the LMMSE
estimator as can be seen in Fig. 4.11. However, the effect of ` can be more clearly observed than with
the LMMSE estimator.

In Fig. 4.12, we compare the best performance of the different estimators, i.e., the LMMSE esti-
mator with `= 0, the LS estimator with `= 5, and the BLUE with `= 0. The BLUE exhibits the best
performance, especially if the channel varies fast. Note though that the complexity of the BLUE is the
highest among the three methods.

4.4 CHANNEL ESTIMATION BASED ON MULTIPLE BLOCKS
4.4.1 Introduction
In the previous section, the channel is estimated for each block separately. To improve the performance,
we will exploit the usage of multiple blocks in this section. It is, nonetheless, noteworthy that in the
case of time-varying channels, the channel coherence time is rather short, which means that we cannot
utilize an infinite number of blocks to enhance the estimation precision. Also note that because we are
considering a time period that spans multiple blocks, the BEM could be less accurate, thereby inducing
a larger modeling error.

For single-carrier systems, the channel estimation methods based on multiple blocks are basically
similar to the ones based on a single block. We can simply consider a larger block size. As a result, we
will not discuss this issue further.
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Comparison of the different channel estimators.

For OFDM systems, utilizing multiple blocks is, however, less straightforward. We have seen in the
previous section that a pilot OFDM symbol1 contains pilot symbols that are grouped in clusters along
the frequency axis. Suppose that along the time axis, we consider J consecutive OFDM symbols, out of
which V are pilot OFDM symbols. An interesting question can then be how to place the pilot symbols
along both the frequency and time axes. To differentiate various pilot patterns, let us use the symbol V
to denote the set that contains the indices of all the pilot OFDM symbols:

V , { j0, . . . , jV−1}, (4.46)

where jv stands for the position of the vth pilot OFDM symbol. The notation P[ jv] is comparable with
the notation P introduced in the previous section, and it represents the set of pilot subcarriers within
the vth pilot OFDM symbol.

Adopting the terms introduced in Coleri, Ergen, Puri, & Bahai (2002), we will basically focus on
three pilot-placement scenarios.

1. The first scheme, referred to as the comb-type, is adopted in Li, Cimini, & Sollenberger (1998);
Yang, Letaief, Cheng, & Cao (2001); Schafhuber, Matz, & Hlawatsch (2003); Athaudage &
Jayalath (2004); Mostofi & Cox (2005); Schafhuber & Matz (2005); Tang, Leus, & Banelli
(2006); Cannizzaro, Banelli, & Leus (2006). In this scheme, pilot symbols occupy only a fraction
of the subcarriers, but such pilot symbols are carried by each OFDM symbol. In other words, we

1In this section, we refer to an OFDM symbol that carries some pilot symbols as a pilot OFDM symbol.
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have V = J and |P[ jv]|< K, for v= 0, . . . ,V − 1. This basically is the pilot scheme that we
discussed in the previous section, but now extended to multiple OFDM symbols.

2. The second scheme, referred to as the block-type, is considered in Choi, Voltz, & Cassara (2001);
Cui, Tellambura, & Wu (2005); Schniter (2006). In the block-type scheme, the pilot symbols
occupy the entire OFDM symbol, and such pilot OFDM symbols are interleaved with data OFDM
symbols. More specifically, this means that V < J and |P[ jv]| = K for v= 0, . . . ,V − 1.

3. The third scheme, considered in Choi & Lee (2005), is referred to as the mixed-type, which is a
compromise between the comb-type and the block-type. To be more specific, the pilot symbols
only occupy a fraction of the subcarriers, and such pilot OFDM symbols are interleaved with data
OFDM symbols. So, we have V < J and |P[ jv]|< K for v= 0, . . . ,V − 1.

Some examples of these three pilot schemes are sketched in Fig. 4.13.
An intriguing question is which scheme is able to yield the most reliable channel esti-

mate under the same bandwidth and power restrictions. Interestingly enough, conflicting results
are reported; e.g., Negi & Cioffi (1998), Sanzi, Jelting, & Speidel (2003) and Choi & Lee
(2005) advocate the comb-type or the mixed-type, while the block-type scheme is preferred in
Cui, Tellambura, & Wu (2005) and Schniter (2006). Common to all pilot schemes is that the
channel estimation method can be virtually decomposed into two steps: first, preliminary channel
estimates are acquired for individual pilot OFDM symbols; second, these preliminary results are
interpolated, with the aid of, e.g., channel statistics or basis functions, to obtain the final chan-
nel estimate. In terms of the intermediate channel estimation performance, the block-type scheme
usually yields a better channel estimate because all the subcarriers are occupied by pilot symbols.
The comb-type or mixed-type schemes work inferior because ICI leads inevitably to a noise floor.
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Illustration of different pilot schemes. The horizontal axis corresponds to the time; the vertical axis corresponds
to the subcarrier positions; and the position where a pilot symbol is located is represented by a dot.
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However, the block-type scheme is subject to a larger interpolation error with respect to the comb-type
and mixed-type schemes because the pilot OFDM symbols are farther apart.

In the remainder of this section, we will provide a more detailed discussion of the impact of diverse
pilot placement schemes on the channel estimation performance.

4.4.2 Data Model and BEM for Multiple OFDM Symbols
Compared with Section 4.3, we need to use a larger BEM to approximate the time variation of the
channel over several OFDM symbols. More specifically, we will now model J(K+M− 1) consecutive
samples of the mth channel tap, e.g., h[0,m], . . . ,h[(J− 1)(K+M− 1)− 1,m], as

h[0,m]
...

h[(J− 1)(K+M− 1)− 1,m]

≈ (u0 · · · uI−1

)
︸ ︷︷ ︸

U


c0[m]

...

cI−1[m]

,

where I− 1 is the BEM order, the J(K+M− 1)× 1 vector ui is the ith BEM function, and ci[m] is the
ith BEM coefficient of the mth channel tap over J OFDM symbols including the CP. Note that unlike
in the single-symbol case, we also consider the part of the channel related to the CP in this model,
although this is not very important.

As a result, for the jth OFDM symbol, we have
h[ j(K+M− 1)+M− 1,m]

...

h[( j+ 1)(K+M− 1)− 1,m]

≈ (u0[ j] · · · uI−1[ j]
)

︸ ︷︷ ︸
U[ j]


c0[m]

...

cI−1[m]

, (4.47)

where U[ j] and ui[ j] are a selection of rows j(K+M− 1)+M− 1 through ( j+ 1)(K+M− 1)− 1
from U and ui, respectively. So repeating (4.47) for all channel taps, we obtain

h[ j]≈ (U[ j]⊗ IM)c,

where h[ j] , (hT
0 [ j] · · · hT

K−1[ j])T , with hk[ j] , (h[ j(K+M− 1)+M− 1+ k,0] · · · h[ j(K+M−

1)+M− 1+ k,M− 1])T , stacks all channel taps in the jth OFDM symbol and where c ,
(cT

0 · · · cT
I−1)

T , with ci , (ci[0] · · · ci[M− 1])T , stacks the BEM coefficients of all channel taps in all
OFDM blocks.

By defining the BEM in this way, the resulting frequency-domain channel matrix of the jth OFDM
symbol will admit an expression that is slightly different from (4.10):

Hd[ j]=
I−1∑
i=0

WH
K Ud,i[ j]WKWH

K Cc,iWK , (4.48)

where Ud,i[ j] is a diagonal matrix with ui[ j] on its diagonal, and Cc,i is a circulant matrix with
(cT

i 01×(K−M))
T on its first column. It is clear that (4.48) is different from (4.10) in the sense that

the BEM sequence ui[ j] is different for each OFDM symbol but the BEM coefficients ci are not, while
in (4.10), there is a common BEM for each OFDM symbol, but with different BEM coefficients.
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For the same reason, we can state that for the vth pilot OFDM symbol, the observation samples
collected in y{O[ jv]}[ jv] admit the following expression (cf. (4.23)):

y{O[ jv]}[ jv]= A[ jv]c+ i[ jv]+ z{O[ jv]}[ jv],

with (cf. (4.24), (4.25), and (4.26))

A[ jv],W{O[ jv],:}
K (Ud,0[ jv] · · · Ud,I−1[ jv])

(
II ⊗W{P[ jv],:}H

K

)
×

(
II ⊗ diag{p[ jv]}VK

{P[ jv],:}
)

.

Note that we have now made the OFDM symbol index jv explicit to show which variables depend on
the vth pilot OFDM symbol.

By repeating the above steps for all the pilot OFDM symbols and stacking the results, we obtain

y= Ac+ i+ z. (4.49)

It is important to remark here that in the block-type scheme, the pilot symbols and unknown data
symbols are in different OFDM symbols, and thus they are not interfering. In that case, (4.49)
reduces to

y= Ac+ z.

Clearly, (4.49) bears an almost identical form as (4.27) for the single OFDM symbol case. Hence,
all the channel estimation methods introduced in Section 4.3.3 can also be applied here with some
trivial modifications. For the sake of space, we will not give all the details here, but refer the interested
reader to Tang (2007).

4.4.3 Channel Identifiability Based on Multiple Blocks
In the previous section, while focusing on a single block, we said the channel is identifiable if the matrix
A[ j] has full column-rank. In practical situations, the conditions given in Theorem 4.2 may be hard to
satisfy for a single OFDM symbol. We have mentioned one such example in Remark 4.6. Another
quite common scenario is that the channel delay spread M could be too large to afford a sufficiently
large number G of pilot clusters as per (4.44). A possible solution is to employ multiple pilot OFDM
symbols. Now that the matrix A in (4.49) is a stack of several A[ jv] matrices, we will study in this
section the impact of using multiple pilot OFDM symbols on the full column-rank condition for A.

To understand this better, let us first rewrite A in (4.49) as a product of two matrices:

A=


Ac[ j0]

. . .

Ac[ jV−1]




Ad[ j0]
...

Ad[ jV−1]

, (4.50)
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where, by adopting the FDKD pilot structure of Assumption 4.2 in Section 4.3.4, we have (cf. (4.35)
and (4.36))

Ac[ jv],W{O[ jv],:}
K (Ud,0[ jv] · · · Ud,I−1[ jv])

(
II ⊗W{P[ jv],:}H

K

)
, (4.51)

Ad[ jv], II ⊗ diag{p[ jv]}V{P[ jv],:}
K . (4.52)

Using Assumption 4.3 in Section 4.3.4, we are now able to obtain two useful lemmas. The first
lemma concerns the situation where every pilot OFDM symbol carries the same FDKD structure,
i.e., the pilot values and positions are identical: p[ j0]= ·· · = p[ jV−1] and P[ j0]= ·· · =P[ jV−1].
Here, p[ jv] stands for the nonzero pilots, and P[ jv] stands for their positions in the vth pilot OFDM
symbol.

Lemma 4.3 Under Assumptions 4.2 and 4.3, if each pilot OFDM symbol carries the same pilot structure, then
the VK×MI matrix A will have full column-rank provided that

M ≤ G≤ VK/I.

Proof. If each pilot OFDM symbol carries the same pilot structure, i.e., Ad[ j0]= ·· · = Ad[ jV−1]= Ad, (4.50)
becomes

A=


Ac[ j0]

...

Ac[ jV−1]

Ad.

As per Lemma 4.1, Ad has rank min{G,M}I. Similar to the proof of Lemma 4.2, we can show that the rank of

(A
T
c [ j0] · · · A

T
c [ jV−1])T equals min{VK/G, I}G. Then applying the rank inequality (4.43) concludes the proof. �

Different from Lemma 4.3, let us consider a scenario where the nonzero pilot symbols are located
on different subcarriers in each pilot OFDM symbol, i.e., P[ j0] 6= · · · 6=P[ jV−1]. This leads to the
following lemma.

Lemma 4.4 Under Assumptions 4.2 and 4.3, if the positions of the nonzero pilot symbols in each pilot OFDM
symbol are different, the matrix A will have full column-rank provided that

M/V ≤ G≤ K/I.

Proof. We can observe from (4.50) that the rank of the left matrix, which is a block diagonal matrix, is equal to the
sum of the ranks of the diagonal blocks. As per Lemma 4.2, each of those diagonal blocks has rank min{K/G, I}G,
and the total rank of the left matrix is min{K/G, I}GV . To study the rank of the right matrix in (4.50), let us permute
its rows to obtain (cf. (4.52)):

II ⊗


diag{p[ j0]}

. . .

diag{p[ jV−1]}




V{P[ j0],:}
K

...

V
{P[ jV−1],:}
K

 . (4.53)
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Because the positions of the VG nonzero pilots are different in each pilot OFDM symbol, the VG×M matrix(
V{P[ j0],:}T

K · · · V
{P[ jV−1],:}T
K

)T

consists of VG different rows of the Vandermonde matrix VK , and will have

rank min{VG,M}. Then again applying the rank inequality (4.43) concludes the proof. �

Let us now combine the scenarios considered in Lemma 4.3 and Lemma 4.4 and introduce the
following assumption.

Assumption 4.4 The total number of pilot OFDM symbols satisfies V = VaVb with Va and Vb being integers. Let
us group the pilot OFDM symbols into Va clusters, each containing Vb pilot OFDM symbols. Inside each cluster,
we take exactly the same pilot structure, whereas among different clusters, we will give the nonzero pilot symbols
different positions.

We then obtain the following theorem that guarantees the full column-rank condition for A, or in
other words channel identifiability.

Theorem 4.3 Under Assumptions 4.2, 4.3, and 4.4, the channel is identifiable over multiple OFDM symbols if
the number of pilot clusters G inside each pilot OFDM symbol satisfies

M/Va ≤ G≤ VbK/I. (4.54)

The proof is essentially analogous to the proofs of Lemmas 4.3 and 4.4, and will be omitted here.
Compared with Theorem 4.2 in Section 4.3.4, we can easily observe that Theorem 4.3 relaxes the

requirements on the number of pilot clusters G within a pilot OFDM symbol, which is beneficial to the
bandwidth efficiency.

4.4.4 Simulation Results
In this section, we test different pilot schemes for an OFDM system, based on multiple blocks. The
channel and OFDM parameters are the same as for the single OFDM symbol case.

We use the BLUE channel estimator and approximate the channel time-variation by means of the
(O)CE-BEM, which spans in total J = 8 OFDM symbols including the CP, with each OFDM symbol
containing K = 64 subcarriers. The order of the BEM is associated with the normalized Doppler spread
ξmax. In the simulation, we set I = 5 if ξmax ≤ 0.002; otherwise, we take I = 9. Note that for every pilot
OFDM symbol, all observation samples are considered.

The pilot schemes to be compared are plotted in Fig. 4.13. In the comb-type scheme, all OFDM
symbols are pilot OFDM symbols, thus V = {0,1, . . . ,7}. Inside each pilot OFDM symbol, the pilots
have the FDKD structure with G= 8 clusters of length P+ 1= 3. In the block-type scheme, the indices
of the pilot OFDM symbols are given by V = {0,3,6}. Inside each pilot OFDM symbol, we further set
(G,P+ 1)= (16,3). Note that different from the traditional works, we let the block-type scheme also
carry FDKD pilots to ensure the channel identifiability (see Remark 4.6). In the mixed-type scheme,
we set V = {0,2,4,6} and (G,P+ 1)= (16,3). In this way, all the pilot schemes result in an equal loss
in bandwidth efficiency of about 37.5%.

As before, we use the true NMSE between the channel estimate and the actual time-varying channel
as performance measure:

NMSE[ j],
1

K
Eh{‖h[ j]− (U[ j]⊗ IM)ĉ‖2}, (4.55)
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where U[ j] is defined in (4.47) as the part of the BEM matrix U that corresponds to the jth OFDM
symbol. To combat the BEM modeling error due to a large BEM window size, we adopt a sliding
window approach. In other words, we will consider the NMSE only for the fourth and fifth OFDM
symbol in the comb-type and mixed-type schemes, and the fifth and sixth OFDM symbols in the
block-type scheme. The channels in the remaining OFDM symbols can be estimated when the window
slides forward.

In the left and right plot of Fig. 4.14, we depict the performance of the three pilot schemes for short
channels, M = 4, with normalized Doppler spreads ξmax = 0.0008 and ξmax = 0.004, respectively. In
addition, we list the performance based on a single OFDM symbol, which is a special case of the
comb-type scheme but considering J = V = 1. We can observe in the left plot of Fig. 4.14 that when
the channel fading is slow, the three pilot schemes yield a similar performance, which is better than
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FIGURE 4.14

True channel NMSE versus SNR for M = 4. (a) ξmax = 0.0008, (b) ξmax = 0.004.
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the performance of the single OFDM symbol case. When the channel fades faster, as illustrated in the
right plot, the block-type scheme experiences more difficulty in tracking the channel compared with the
other schemes. This is due to the fact that the pilot symbols are grouped in complete OFDM symbols
and hence different pilot OFDM symbols are farther apart than in the other two schemes. Because the
channel estimation methods implicitly carry out some interpolation over the considered time span, it is
clear that the block-type scheme cannot promptly react to a time-varying channel.

The results for a much longer channel, M = 16, are depicted in Fig. 4.15. We observe again that
when the channel varies slowly, the block-type scheme exhibits a similar performance as the other two
schemes, but gets worse when the channel varies much faster as shown in the right plot. Interestingly,
the performance of the comb-type scheme degrades in the right plot more severely than with M = 4,
and suffers from a high noise floor at a moderate-to-high SNR. Compared with the other channel
situations, this suggests that the comb-type scheme is inferior for channels that have a large spread
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True channel NMSE versus SNR for M = 16. (a) ξmax = 0.0008, (b) ξmax = 0.004.
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in both the Doppler and delay domains. It is noteworthy that the mixed-type scheme satisfies the
conditions of both Theorem 4.2 and Theorem 4.3 for both channel lengths. In addition, it withstands
the fast channel variation much better than the block-type scheme, thanks to the fact that the pilot
OFDM symbols are closer to each other. These two factors endow the mixed-type scheme with a very
robust channel estimation performance for all fading situations.

4.5 EXTENSION TO MIMO SYSTEMS
4.5.1 Introduction
In this section, we extend the methods discussed for a single transmit and receive antenna, or the
single-input single-output (SISO) case, to multiple transmit and receive antennas, or the so-called
multiple-input multiple-output (MIMO) case.

Consider a system with MT transmit and MR receive antennas. We assume again that every transmit
antenna groups the pilot symbols in G clusters of length P+ 1, where the gth pilot cluster of the
mth transmit antenna p(m)g has indices in P(m)

g = {P(m)g , . . . ,P(m)g +P}. To this pilot cluster, we again

assign a set of observation samples with indices collected in the set O(m)
g , similarly defined as in (4.11)

(for single-carrier systems) and (4.18) (for OFDM systems), with Pg replaced by P(m)g . To perform
channel estimation, every receive antenna then selects the observation samples with indices in O =

{O(1)
0 , . . . ,O(1)

G−1, . . . ,O(MT)
G−1 }. With this in mind, it is easy to extend the data models of (4.16) and (4.23)

to multiple transmit and receive antennas. Also the channel estimators are straightforward extensions
of the channel estimators derived for the SISO case.

For single-carrier systems, when `≥M− 1, there is no interference from unknown data symbols,
and the channel estimation problem can actually be separated into the different receive antennas. How-
ever, when ` <M− 1, there is interference from unknown data symbols and the performance could
benefit from using the observation samples from the other receive antennas.

For OFDM systems, however, we know that there is always interference from unknown data sym-
bols and that all receive antennas should be treated together if we want to obtain the best possible
performance.

Let us now briefly summarize some channel identifiability results for MIMO systems. Proofs can
be derived in a similar manner as for the SISO case.

4.5.2 Single-Carrier System
Let us again start by adopting the following assumption on the pilot structure:

Assumption 4.5 The pilot structure satisfies the following conditions:

(C1) The length P+ 1 of each pilot cluster satisfies P+ 1≥ 2`+ 1.
(C2) Inside each pilot cluster, either the first or the last ` pilots are zero.
(C3) Every pilot cluster has at least one nonzero pilot in between the first and last ` pilots.
(C4) The nonzero pilot symbols from different pilot clusters should be separated by at least M− 1 symbols,

viewed over all transmit antennas.

Note that these conditions are the same as in the SISO case (see Assumption 4.1 in Section 4.3.4) with
the exception that condition (C4) should hold over all transmit antennas.
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We can now state the following theorem:

Theorem 4.4 Under Assumption 4.5, the channel is identifiable if the number of pilot clusters per transmit
antenna G is greater than or equal to the BEM length, i.e.,

G≥ I.

Note that this condition is the same as before (see Theorem 4.1), which is pleasing. However, in
order to reduce the interantenna interference (IAI), it is better to overlay the nonzero pilot clusters
on one transmit antenna with zero pilot clusters of the same length on the other transmit antennas.
When `≥M− 1, this operation will actually separate the channel estimation problem into the different
transmit antennas.

Remark 4.7 The TDKD structure has been extended to the MIMO case in Kannu & Schniter (2006) and Yang,
Ma, & Giannakis (2004). It is a pilot structure where the pilot clusters on all transmit antennas overlap and
where on the mth transmit antenna, the G pilot clusters are equidistant and every cluster consists of a nonzero
pilot symbol surrounded by M− 1+ (m− 1)M zeros to the left and M− 1+ (MT−m)M zeros to the right, i.e.,
P+ 1= (MT+ 1)M− 1. As in the SISO case, the MIMO TDKD structure has been proven to be optimal in
the MSE and capacity sense provided the (C)CE-BEM is used for channel modeling (Kannu & Schniter, 2006;
Yang, Ma, & Giannakis, 2004). The MIMO TDKD structure is a special case of the pilot structure defined by
Assumption 4.5 with P+ 1= (MT+ 1)M− 1 and `=M− 1. In that case, we know from Theorem 4.4 that the
channel is identifiable if G≥ I, as also argued in Kannu & Schniter (2006) and Yang, Ma, & Giannakis (2004) for
the (C)CE-BEM.

4.5.3 OFDM System
For OFDM systems, we again adopt a more specific pilot structure.

Assumption 4.6 The pilot structure satisfies the following conditions:

(C1) The length P+ 1 of each pilot cluster satisfies P+ 1≥ 1.
(C2) Every pilot cluster has one nonzero pilot.
(C3) The nonzero pilots are equispaced, viewed over all transmit antennas.

As in the single-carrier case, the conditions are the same as in the SISO case (see Assumption 4.2
in Section 4.3.4) with the exception that condition (C3) should hold over all transmit antennas.
Note that this means that the nonzero pilots should not necessarily be equispaced on every transmit
antenna.

Remark 4.8 In Kannu & Schniter (2006), also the FDKD structure has been extended to the MIMO case. It is
a pilot structure where the pilot clusters on all transmit antennas overlap and where on the mth transmit antenna,
the G pilot clusters are equidistant and every cluster consists of a nonzero pilot symbol surrounded by D− 1+
(m− 1)D zeros to the left and D− 1+ (MT−m)D zeros to the right, i.e., P+ 1= (MT+ 1)D− 1, where D is the
significant discrete Doppler spread. As in the SISO case, the MIMO FDKD structure is optimal in the MSE sense
if the (C)CE-BEM is used for channel modeling (Kannu & Schniter, 2006). However, this time, we cannot say that
the MIMO FDKD structure is a special case of Assumption 4.6, since condition (C3) is not satisfied. The reason
why we need condition (C3) is because we want to prove identifiability for a general BEM and not only for the
(C)CE-BEM. Under the (C)CE-BEM, it would be enough to replace condition (C3) by the requirement that the
nonzero pilots on the same transmit antenna are equispaced and the nonzero pilots from all transmit antennas are
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separated by at least D− 1 symbols. In that case, the MIMO FDKD structure would fit into Assumption 4.6 with
P+ 1= (MT+ 1)D− 1.

Similarly to the SISO case (see Theorem 4.2), we can prove that for a single block, the following
theorem holds:

Theorem 4.5 Under Assumptions 4.6 and 4.3, the channel is identifiable if the number of pilot clusters per
transmit antenna G satisfies

M ≤ G≤ K/(IMT ). (4.56)

So the lower bound is the same as in the SISO case, but the upper bound is decreased with the number
of transmit antennas MT . As in the single-carrier case, we can reduce the IAI by overlaying the nonzero
pilot clusters on one transmit antenna with zero pilot clusters of the same length on the other transmit
antennas. In contrast to the single-carrier case though, we will generally not be able to completely
separate the channel estimation problem into the different transmit antennas.

Remark 4.9 In Dai (2007), optimal pilot structures have been proposed for MIMO OFDM systems. However, it
is assumed there that the discrete Doppler spread is exactly limited to D, the pilot clusters on all transmit antennas
overlap and have length P+ 1= D, and one observation sample per pilot cluster is considered. The condition on
the number of clusters G per transmit antenna then becomes G≥MTMI, which is much worse than our condition
in (4.56).

For multiple blocks and a mixed-mode pilot scheme, we can actually consider two cases, as illus-
trated in Fig. 4.16. When the pilot OFDM symbols from the different transmit antennas do not overlap
(left side of Fig. 4.16), the different transmit antennas do not interfere with each other as far as channel
identifiability is concerned, and we can actually use the results from the SISO case.

Theorem 4.6 Under Assumptions 4.2, 4.3, and 4.4, and assuming that the pilot OFDM symbols from the different
transmit antennas do not overlap, the channel is identifiable over multiple OFDM symbols if the number of pilot
clusters per transmit antenna G inside each pilot OFDM symbol satisfies

M/Va ≤ G≤ VbK/I.

When the pilot OFDM symbols from the different transmit antennas overlap (right side of Fig. 4.16),
however, we have a more complicated situation. In that case, the following theorem applies:

Theorem 4.7 Under Assumptions 4.6, 4.3, and 4.4, and assuming that the pilot OFDM symbols from the different
transmit antennas overlap, the channel is identifiable over multiple OFDM symbols if the number of pilot clusters
per transmit antenna G inside each pilot OFDM symbol satisfies

M/Va ≤ G≤ VbK/(IMT ).

So as before, only the upper bound has been affected and is decreased by the factor MT . The IAI can
again be reduced by inserting additional zero pilot clusters overlaying the nonzero pilot clusters as
indicated before, and this holds whether the pilot OFDM symbols from the different transmit antennas
overlap or not.
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FIGURE 4.16

Two possible pilot structures for MIMO–OFDM, when multiple symbols are considered. The black boxes
represent pilot OFDM symbols, whereas the white boxes represent data OFDM symbols.

4.6 ADAPTIVE CHANNEL ESTIMATION
In the earlier sections, we have shown batch approaches to estimate the time-varying channel BEM
coefficients by dedicated pilot symbols in single-carrier and OFDM scenarios, with a single block or
multiple blocks of observations. In this section, we will explain how all the proposed approaches can
be cast in an adaptive framework, which could be useful to track not only the instantaneous chan-
nel variations but also the possible nonwide-sense stationary channel conditions and, potentially, to
reduce the amount of redundant pilots. Whichever is the design of the pilots and of the observation
samples, we have shown that the channel estimation relies on the observation equations (4.27). For
notational simplicity, we will assume that each observation window is contiguous to the next one and
coincident with a single-block duration, either in the single-carrier or the OFDM scenario. However,
the time-domain formulation of the channel-estimation problem, especially in single-carrier scenarios,
can naturally lead to observation windows that overlap in time. Thus, the results that follow can be
easily extended to an overlapped observation approach. This overlapped observation approach may be
particularly useful in very high Doppler scenarios in order to avoid abrupt changes in the evolution of
the BEM coefficients, which may be hard to track otherwise.
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To further simplify the problem, we also assume that the pilot design and the observation samples
are chosen in such a way that the interference term in (4.27) can be neglected and, consequently, the
observation equation reduces to

y{O[n]}[n]= A[n]c[n]+ z{O[n]}[n], (4.57)

where, as before, the index n has been used to identify the nth observation window. The observation
matrix A[n], defined in (4.17), may depend on n or not, depending on how we select the observation
index set O[n]= {O0[n], . . . ,OG[n]} and the pilot design p[n], which may change from one block to
another. Note that A[n] may also depend on n via the underlaying BEM basis matrix U, which, instead
of being fixed for all n, can be smoothly linked from one block to another in order to facilitate tracking
(see He & Tugnait, 2007). In the adaptive channel estimation literature, it is quite common to assume
that a time-varying channel obeys an auto-regressive (AR) model evolution, which in the simplest
case reduces to a Gauss–Markov process evolution. Several authors assume that also the BEM channel
coefficients evolve in a similar fashion from one observation window to another, as expressed by

c[n]=8[n]c[n− 1]+β[n], (4.58)

where β[n] represents the BEM coefficient innovation with respect to the (n− 1)st observation
window. Actually, (4.57) and (4.58) are the observation and the model evolution equations, respec-
tively, that typically cast the channel-estimation problem in a vector-state vector-observation (VSVO)
Kalman filter formulation. Thus, the Kalman filter estimate of the BEM coefficients can be recursively
computed during each observation window according to the following set of equations:

MF[n]=8[n]MA[n− 1]8H[n]+Q[n]

K[n]=MF[n]AH[n]
(
Rñ+A[n]MF[n]AH[n]

)−1

ĉ[n]=8[n]ĉ[n− 1]+K[n]
(
y{O[n]}[n]−A[n]8[n]ĉ[n− 1]

)
MA[n]= (I−K[n]A[n])MF[n],

(4.59)

where MF[n] and MA[n] are the forward and the a-posteriori error covariance matrices, respectively,
K[n] is the Kalman gain matrix, and Q[n] is the covariance matrix of the innovation of the BEM coef-
ficients; their initial conditions for n= 0 can be set according to the classical Yule–Walker equations
(Kay, 1993). Moreover, together with the evolution matrix 8[n], they can be matched to the channel
statistics as specifically proposed in Cannizzaro, Banelli, & Leus (2006) for a VSVO Kalman formu-
lation. A major complexity reduction associated with the matrix inversion in the Kalman gain update
equation is obtained by an equivalent vector-state scalar-observation (VSSO) formulation that decou-
ples the estimation problem into the different BEM coefficients, as proposed in Muralidhar & Kwok
(2009). Another VSVO Kalman approach, which includes also a Kalman equalizer, has been proposed
in He & Tugnait (2007) for single-carrier transmissions. This approach has also been extended to SIMO
(He & Tugnait, 2008) and MIMO (Kim & Tugnait, 2008), where in addition a data-aided approach has
been considered, as formerly explored in Banelli, Cannizzaro, & Rugini (2007) for OFDM. In order
to reduce the complexity, He & Tugnait (2007); He & Tugnait (2008); Tugnait & He (2008); Kim &
Tugnait (2008, 2009a,b); Song & Tugnait (2009) ignore the coupling among the evolutions of the BEM
coefficients, by approximating the evolution matrix as a diagonal one (i.e., 8[n]= φ[n]I), and they
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simply adapt φ[n] to the maximum Doppler frequency. Additionally, these single-carrier approaches
take advantage of partially overlapped observation windows to improve tracking at the expense of some
complexity increase. To further reduce the complexity, other adaptive techniques can be used, such as
LMS algorithms, RLS algorithms (Cannizzaro, Banelli, & Leus, 2006; Kim & Tugnait, 2009a), or
Wiener LMMSE algorithms (Lindbom, Sternad, & Ahlen, 2001), which usually trade off performance
for complexity with respect to the optimum LMMSE Kalman solution.

4.7 CONCLUSIONS
In this chapter, we have discussed pilot-aided channel estimation for time-varying channels. We have
focused on a block approach where the channel is modeled as a BEM within the block. Channel esti-
mation has been studied for single-carrier as well as OFDM systems. The channel is always estimated
in the time domain, but the pilot symbols are inserted in the time domain for single-carrier systems and
in the frequency domain for OFDM systems. Different channel estimators have been studied and the
number of observation samples taken into account for channel estimation has been optimized. We have
first looked at the case where a single block of data is considered, and we have subsequently extended
our discussion to the case where multiple blocks of data are used. The latter leads to less restric-
tive channel identifiability conditions, and can allow for a higher bandwidth efficiency. We have also
considered extensions to multiple antenna systems and briefly discussed adaptive channel estimation.
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