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Abstract

An improved optimization algorithm for the time domain equalizer (TEQ) is developed for discrete multitone (DMT)

based asymmetric digital subscriber line (ADSL). In contrast with existing algorithms, our algorithm explicitly

disregards the unused tones in the cost function as well as in the non-triviality constraint. Simulation results are

presented for the upstream channel. It is shown that the achievable bitrate is higher than for a popular existing

algorithm.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Equalization is required in a DMT-system to combat intercarrier and intersymbol interference [10].
Basically, the equalization relies on the insertion of a cyclic prefix and a 1-tap frequency domain equalizer.
However, when the order of the channel impulse response is larger than the cyclic prefix length,
interferences arise. Hence, additional equalization techniques are called for. Mostly time domain
equalization to shorten the channel impulse response is then adopted [2–9,13–16].
Minimum mean-square error (MMSE) channel shortening is a well-known time domain equalizer design

approach. The cost function is quadratic and has a unique minimum, which leads to low-complexity
e front matter r 2004 Elsevier B.V. All rights reserved.
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algorithms. To avoid the trivial zero solution, the minimization is subject to a certain non-triviality
constraint. Although this design procedure is very popular, it has some important disadvantages resulting
from the fact that MMSE channel shortening is not equivalent to bit rate optimization.
To improve the performance of MMSE channel shortening, we propose a new algorithm called weighted

MMSE channel shortening. It differs from previously presented algorithms in that the unused tones
are explicitly disregarded in the cost function as well as in the non-triviality constraint, by introducing
weight matrices. This weighted MMSE channel shortening is still not equivalent to bit rate optimization,
but it comes close. Note that many tones are labeled as unused from the outset because they overlap the
plain old telephone service (POTS) band, or because they are used for the other direction in case of
frequency division duplexing (FDD) systems, or because they occupy a band that is used for radio
amateurs.
A more advanced equalizer structure can be obtained by shifting the time domain equalizer to the

frequency domain. By optimizing this equalizer for each tone separately, we can then obtain true bit rate
optimization, as discussed in [12]. Although this so-called per tone equalizer is simple to implement, it is
difficult to design, needs a lot of memory, and requires an adaptation of the current modem architectures.
Therefore, we want to stick to cheap time domain equalizer design in this paper.
In Section 2, we give a comprehensive review of MMSE channel shortening and formulate the main

disadvantages. We then introduce weighted MMSE channel shortening in Section 3. Simulation results are
given in Section 4 and show that weighted MMSE channel shortening significantly outperforms classical
MMSE channel shortening in the upstream direction. Finally, conclusions are drawn in Section 5.

Notation: Upper (lower) bold face letters denote matrices (column vectors); frequency-domain
components are indicated by a tilde; ð�ÞT, ð�Þ� and ð�Þ

H denote transpose, complex conjugate, and complex
conjugate transpose (or Hermitian), respectively; Ef�g represents the statistical expectation; k � k represents
the Frobenius norm and j � j the absolute value; IN denotes the N 	 N identity matrix and 0M	N the M 	 N

all-zero matrix; diagfxg represents the diagonal matrix with the vector x on the diagonal and diagfXg
the diagonal matrix with the main diagonal of the matrix X on the diagonal; 
 denotes the Kronecker
product; and finally, to select an element, subvector, or submatrix from a vector or matrix we use Matlab
notation.
2. MMSE channel shortening

A DMT system avoids intercarrier and intersymbol interference if a cyclic prefix with sufficient length is
added to each transmitted symbol. More specifically, the prefix length has to be equal to or longer than the
order L of the channel impulse response (CIR) h ¼ ½h0; . . . ; hL

T. Hence, it results in a minimal efficiency
loss of L=ðN þ LÞ, with N the DMT symbol size. For ADSL, this minimal efficiency loss would be
unacceptably high.
Typically, a T-tap time domain equalizer (TEQ) is therefore introduced before demodulation (e.g., in

ADSL with T ¼ 32 for the downstream and T ¼ 64 for the upstream) to equalize the CIR to a shorter
target impulse response (TIR) such that it ‘fits’ into a given cyclic prefix length n. The efficiency loss then
decreases to n=ðN þ nÞ.
Several algorithms are proposed in literature [2–9,13–16] that search for a T-tap TEQ

w ¼ ½w0; . . . ;wT�1
T, such that its convolution with the CIR h is closest to an arbitrary TIR of order n,

denoted by b ¼ ½b0; . . . ; bn
T. The basic MMSE channel shortening approach is shown in Fig. 1.

One searches for a TEQ w, a TIR b, and a decision delay dtot, such that the following cost function is
minimized:

J ¼ Efe2l g ¼ Efð½yl ; . . . ; yl�Tþ1w� ½xl�dtot ; . . . ;xl�dtot�nbÞ
2
g; ð1Þ
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Fig. 1. TEQ design by MMSE channel shortening.

K. Van Acker et al. / Signal Processing 84 (2004) 1895–1908 1897
where yl and xl are the output and input signal, respectively, with l the sample index. Note that dtot is the
‘total’ decision delay introduced by the channel and can be written as dþ d0 � 1, where the reference delay
d0 indicates the first sample of the maximal energy interval of length nþ 1 in h, and d denotes the ‘relative’
decision delay under consideration. To avoid trivial solutions (i.e., zero vectors w and b), a non-triviality
constraint is applied, which can be a unit norm, unit tap, or unit output energy constraint on either
w or b [17].
Shortening the channel impulse response by means of a MMSE criterion has no direct relation to the

optimal bit rate, which results in unsatisfactory performance. The non-triviality constraint also has no
relation to the bit rate, and hence it may be difficult to select the appropriate constraint. Besides the non-
optimal capacity, another aspect of the unsatisfactory behavior of the MMSE shortening algorithm is the
non-smoothness of the resulting bit rate as a function of the decision delay. Hence, an optimal delay is not
easily selected beforehand, and an exhaustive search over a large range of delays is needed during modem
initialization.
3. Weighted MMSE channel shortening

In an attempt to improve the performance of the shortening algorithm, we modify the cost function as
well as the non-triviality constraint. Unlike [14], our algorithm explicitly disregards the unused tones in the
cost function and the non-triviality constraint, which is achieved by introducing weight matrices. The
constrained optimization problem still is quadratic and has a unique minimum. Note that this approach is
not equivalent to bit rate optimization as is performed by the geometric TEQ [1], which leads to a nonlinear
optimization problem, in general without a unique minimum.
In the sequel, we first derive the new cost function and non-triviality constraint. We then interpret the

resulting constrained optimization problem. Finally, we discuss how to compute the required correlation
matrices. Thereby, we first assume the additive channel noise and input signal are white, and then show how
these expressions extend when we want to take the noise and input color into account.
3.1. Cost function

Our aim is to take into account the DMT nature in the cost function. Therefore, we have to develop a
cost function on the DMT symbol level and need to sum (1) over l ¼ dtot; . . . ; dtot þ N � 1. Hence, the new
cost function becomes

J ¼ EfkY � w� X � bk2g: ð2Þ
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where Y is the N 	 T Toeplitz output matrix that is given by

Y ¼

ydtot ydtot�1 � � � ydtot�Tþ1

ydtotþ1 ydtot � � � ydtot�Tþ2

..

. ..
. . .

. ..
.

ydtotþN�1 ydtotþN�2 � � � ydtot�TþN

2
666664

3
777775 ð3Þ

and X is the N 	 ðnþ 1Þ Toeplitz input matrix given by

X ¼

x0 x�1 � � � x�n

x1 x0 � � � x�nþ1

..

. ..
. . .

. ..
.

xN�1 xN�2 � � � xN�1�n

2
66664

3
77775: ð4Þ

Since we are interested in minimizing this cost function only over the used tones, we will modify the cost
function by moving to the frequency domain. We then obtain

J ¼ Efk ~Y � w� ~X � bk2g; ð5Þ

where

~Y ¼ S � FN � Y; (6)

~X ¼ S � FN � X; (7)

with FN the N-point DFT matrix, and S the N 	 N selection matrix that selects the used tones, i.e., S is an
N 	 N diagonal matrix with ones on the positions corresponding to the used tones and zeros elsewhere.
Note that if a QAM symbol is modulated on tone i, i ¼ 2; . . . ;N=2, the complex conjugated QAM symbol
is modulated on tone N � i þ 2, in order to obtain a real output. Hence, if tone i, i ¼ 2; . . . ;N=2, is used,
then also tone N � i þ 2 is used. This means we have Sði; iÞ ¼ SðN � i þ 2;N � i þ 2Þ, i ¼ 2; . . . ;N=2.
Let us now write the output signal yl as a function of the input signal xl and the additive channel noise nl

Y ¼ XextHþN; ð8Þ

where N is the N 	 T Toeplitz noise matrix that is given by

N ¼

ndtot ndtot�1 � � � ndtot�Tþ1

ndtotþ1 ndtot � � � ndtot�Tþ2

..

. ..
. . .

. ..
.

ndtotþN�1 ndtotþN�2 � � � ndtot�TþN

2
66664

3
77775; ð9Þ

Xext is the N 	 ðL þ TÞ Toeplitz extended input matrix given by

Xext ¼

xdtot xdtot�1 � � � xdtot�L�Tþ1

xdtotþ1 xdtot � � � xdtot�L�Tþ2

..

. ..
. . .

. ..
.

xdtotþN�1 xdtotþN�2 � � � xdtot�L�TþN

2
66664

3
77775 ð10Þ
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and H is the ðL þ TÞ 	 T Toeplitz channel matrix given by

ð11Þ

Note that Xext can be viewed as an extension of X : X ¼ Xextð:; dtot þ 1 : dtot þ nþ 1Þ. Using (8), the cost
function (5) can be rewritten as

ð12Þ

where

~N ¼ S � FN �N; ð13Þ

~Xext ¼ S � FN � Xext: ð14Þ

Finally, minimizing (12) can be reformulated as the following MMSE problem:

ð15Þ

where R ~Xext
is the extended input correlation matrix R ~Xext

¼ Ef ~X
H

ext �
~Xextg, and R ~N is the noise correlation

matrix: R ~N ¼ Ef ~N
H
� ~Ng.
3.2. Non-triviality constraint

As already mentioned, many constraints can be considered, such as a unit norm, unit tap, or unit output
energy constraint on either w or b. It has been shown that a unit output energy constraint on w or b, or even
on both, all result in the same TEQ w (up to a possible scaling), and generally lead to the best performance
in terms of bit rate [17]. Here, we consider a unit output energy constraint on b

EfkX � bk2g ¼ 1:

As we did for the cost function, we adapt this constraint by disregarding the unused tones

Efk ~X � bk2g ¼ 1; ð16Þ
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which can be written as

EfbH � XH � FH
N � S � FN � X � bg ¼ 1; ð17Þ

where we will explicitly take the cyclic prefix and the unused tones into account for the matrix X. First of
all, it is clear that we can rewrite X � b as Xcirc � bzp, where Xcirc is an N 	 N matrix that is obtained by
circularly extending X, and bzp is an N 	 1 vector that is obtained by zero-padding b. The non-triviality
constraint can then be written as

EfbHzp � X
H
circ � F

H
N � S � FN � Xcirc � bzpg ¼ 1: ð18Þ

After the insertion of ð1=N � FH
NÞ � FN ¼ IN between bHzp and X

H
circ and between Xcirc and bzp, and using the

fact that a circulant matrix is diagonalized by means of DFT matrices, we obtain

Ef~b
H
� diagf ~xgH � S � diagf ~xg � ~bg ¼ 1; ð19Þ

where the N 	 1 vector ~b is the DFT of the N 	 1 vector bzp : ~b ¼ FN � bzp, and the N 	 1 vector ~x is the
DFT of the N 	 1 vector Xcircð:; 1Þ : ~x ¼ FN � Xcircð:; 1Þ. In other words, the non-triviality constraint
becomesX

i¼used tone

j ~bij
2 � Efj ~xij

2g ¼ 1; ð20Þ

where ~bi and ~xi are the ith elements of ~b and ~x, respectively. They denote the TIR and the QAM symbol on
the ith tone, respectively. It is further assumed that Efj ~xij

2g is constant for the used tones: Efj ~xij
2g ¼ P,

i ¼ used tone. As a result, the non-triviality constraint can be rewritten as

~b
H
� S � ~b ¼ bHzp � F

H
N � S � FN � bzp

¼ bH � RH �QH �Q � R � b

¼ bH � RH � R � b ¼ 1=P; (21)

where Q � R is the QR decomposition of S � FN ð:; 1 : nþ 1Þ. With c ¼ R � b, the minimization problem then
becomes

ð22Þ

subject to cH � c ¼ 1=P. The effect of the constant P is only a scaling of the unit norm solution for c by
1=

ffiffi
½

p
P, and thus b and w are also scaled by 1=

ffiffi
½

p
P. As a scaling of the TEQ w does not alter the SNR on

the tones, and hence the bit rate of the DMT system, the constant P can without loss of generality be set to
1. Defining the ðL þ 2TÞ 	 ðT þ nþ 1Þ matrix A as
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and computing its QR decomposition: A ¼ QA � RA, we can then rewrite the constrained MMSE problem
(22) as

subject to cH � c ¼ 1. Since RA is upper triangular, this can be rewritten as

min
w;c

fkRAð1 : T ; 1 : TÞ � w� RAð1 : T ;T þ 1 : T þ nþ 1Þ � ck2

þ kRAðT þ 1 : T þ nþ 1;T þ 1 : T þ nþ 1Þ � ck2g; (23)

subject to cH � c ¼ 1. If RAð1 : T ; 1 : TÞ is invertible, the first term can always be set to zero. We therefore
start by solving

min
c

kRAðT þ 1 : T þ nþ 1;T þ 1 : T þ nþ 1Þ � ck2

subject to cH � c ¼ 1. The solution is given by the right singular vector of RAðT þ 1 : T þ nþ 1;T þ 1 :
T þ nþ 1Þ corresponding to the smallest singular value. Hence, we first compute the singular value
decomposition of RAðT þ 1 : T þ nþ 1;T þ 1 : T þ nþ 1Þ: RAðT þ 1 : T þ nþ 1;T þ 1 : T þ nþ 1Þ ¼
U � R � VH, and then take copt ¼ Vð:; nþ 1Þ. The first term in (23) is finally set to zero by taking
wopt ¼ RAð1 : T ; 1 : TÞ

�1
� RAð1 : T ;T þ 1 : T þ nþ 1Þ � copt.
3.3. Interpretation

In this section, we interpret the constrained MMSE problem (22), showing that the adopted non-triviality
constraint is meaningful. From (5) and (16), it is clear that the solution of the constrained MMSE
problem is equal to the solution of the following unconstrained MMSE problem (up to a scaling
ambiguity):

ð24Þ

where R ~X is the input correlation matrix R ~X ¼ Ef ~X
H
� ~Xg, R ~Y is the output correlation matrix:

R ~Y ¼ Ef ~Y
H
� ~Yg, and R ~X ~Y is the input/output crosscorrelation matrix: R ~X ~Y ¼ Ef ~X

H
� ~Yg. This can be

explained as follows. The solution of the unconstrained MMSE problem (24) is clearly determined up to a
scaling ambiguity. If we scale the solution such that the denominator is one, the obtained result must
obviously minimize the numerator under the constraint of the denominator being one, and hence leads to
the solution of the constrained MMSE problem. The cost function in (24) can be seen as a sort of 1/SNR in
the subband of the used tones. For every value of subband signal energy in the denominator, the subband
MSE in the numerator is minimized as shown in Eq. (15), with the subband energy taken as the sum of the
energies of the used tones. Note that this optimization criterion does not correspond to the ultimate goal,
namely SNR optimization for each tone separately, but it comes close.
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3.4. Correlation matrices

To solve the constrained MMSE problem (22), the noise and extended input correlation matrices are
needed. These correlation matrices can be written as

R ~N ¼ Ef ~N
H
� ~Ng ¼ EfNH � FH

N � S � FN �Ng; ð25Þ

R ~Xext
¼ Ef ~X

H

ext �
~Xextg ¼ EfXH

extF
H
N � S � FN � Xextg; ð26Þ

where the S matrix basically selects the appropriate rows and columns in FN and FH
N , respectively. In

Appendix A, we prove that the product FH
N � S � FN forms an N 	 N real symmetric circulant weight

matrix. In other words, we can write

FH
N � S � FN ¼

a1 a2 � � � aN=2 aN=2þ1 aN=2 � � � a2

a2 a1 a2 � � � aN=2 aN=2þ1 aN=2 � � �

..

.
a2 a1

. .
. ..

. . .
. . .

. . .
.

aN=2
..
. . .

.
a1 a2

. .
. . .

.
aN=2þ1

aN=2þ1 aN=2 � � � a2 a1 a2 � � � aN=2

aN=2 aN=2þ1
. .
. . .

.
a2 a1

. .
. . .

.

..

.
aN=2

. .
. . .

. ..
. . .

. . .
.

a2

a2
..
. . .

.
aN=2þ1 aN=2

. .
.

a2 a1

2
66666666666666666664

3
77777777777777777775

; ð27Þ

where a1; . . . ; aN=2þ1 2 R. Also shown in Appendix A is that

½a1; a2; . . . ; aN=2; aN=2þ1; aN=2; . . . ; a2
T ¼ FN � diagfSg:

In Appendix B, we then prove that for white additive channel noise nl (obtained by ignoring the color due
to the receive filters) and a white input signal xl (obtained by ignoring the color due to the presence of the
cyclic prefix and the unused tones), the correlation matrices can be written as

R ~N ¼ TT � Efn2l g; ð28Þ

R ~Xext
¼ TLþT � Efx2

l g; ð29Þ

where TK is a K 	 K real symmetric Toeplitz matrix, where each diagonal contains the sum of the elements
on the corresponding diagonal of the weight matrix of (27), the sum being zero if the weight matrix of (27)
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does not contain this diagonal (this occurs when K4N):

TK ¼

N � a1 ðN � 1Þ � a2 � � � a2 0 � � � 0

ðN � 1Þ � a2 N � a1 ðN � 1Þ � a2 � � � a2
. .
. ..

.

..

.
ðN � 1Þ � a2 N � a1

. .
. . .

. . .
.

0

a2
..
. . .

. . .
. . .

. . .
.

a2

0 a2
. .
. . .

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

. . .
.

ðN � 1Þ � a2

0 � � � 0 a2 � � � ðN � 1Þ � a2 N � a1

2
66666666666666664

3
77777777777777775

: ð30Þ

Above, we have assumed that the additive channel noise nl and the input signal xl are white. These
assumptions simplify the expressions of the required correlation matrices but are not true in practice. In an
actual DMT system, the receive filters color the additive channel noise nl , and the presence of the cyclic
prefix and the unused tones color the input signal xl . We now show how the noise and extended input
correlation matrix can be computed by incorporating the color of the noise and input signal. The basic idea
is to rewrite the noise and extended input correlation matrices as

R ~N ¼ EfNH � FH
N � S � FN �Ng

¼ EfDH
T � ðIN 
 n�ÞðIN 
 nTÞDT g

¼ DH
T ðIN 
 R�

nÞDT ; (31)

R ~Xext
¼ EfXH

ext � F
H
N � S � FN � Xextg

¼ EfDH
LþT � ðIN 
 x�ÞðIN 
 xTÞDLþT g

¼ DH
LþT ðIN 
 R�

xÞDLþT ; (32)

where n ¼ ½ndtot�Tþ1; . . . ; ndtotþN�1
T, x ¼ ½xdtot�L�Tþ1; . . . ;xdtotþN�1

T, Rn ¼ EfnnHg, Rx ¼ EfxxHg, and
Dt ¼ ½DT

t;i1
; . . . ;DT

t;iK
T, with i1; . . . ; iK the used tones and Dt;i the ðN þ t � 1Þ 	 t Hankel matrix given by

ð33Þ

It is further convenient to translate Rx to the frequency domain. Therefore, we rewrite x as a function of
the frequency domain symbols as

x ¼ ½0a	b; Ia; 0a	g � ðI3 
 1=N � P � FH
NÞ � ½ ~x

T
�; ~x

T; ~xTþ
T; ð34Þ
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where a ¼ N þ L þ T � 1, b ¼ N þ 2nþ dtot � L � T þ 1, g ¼ N þ n� dtot, the vectors ~x� and ~xþ are the
previous and next DMT symbol, respectively, and the matrix P represents the matrix that adds a cyclic
prefix

As a result, we can express Rx as

Rx ¼ ½0a	b; Ia; 0a	g � ðI3 
 1=N2 � P � FH
N � R ~x � FN � PHÞ � ½0a	b; Ia; 0a	g

T: ð35Þ

where R ~x ¼ Ef ~x ~xHg.
4. Simulation results

To compare the performance of different equalizers, simulation results are presented for an upstream
ADSL channel. We consider a 4 km 26 AWG ‘inline’ loop, i.e., without bridged taps. Simulation results for
other loop lengths and some more difficult reference loops show a similar behavior (see [11, Chapter 3]).
The additive channel noise consists of �140 dBm=Hz white Gaussian noise (colored by the receive filters).
A frequency division multiplexing (FDM) set-up is adopted and the residual echo is taken into account.
The transfer function of the channel and the noise power spectral density (PSD) are obtained from a
simulation model from Alcatel. The channel transfer function includes the model of the copper wire itself as
well as the digital and analog transmit and receive filters.
To compute the bit rate, we compute the SNR for each used tone i (denoted as SNRi), and take the SNR

gap G ¼ 9:8 dB, noise margin gm ¼ 6 dB, and coding gain gc ¼ 3 dB. The number of bits assigned to tone i

is then given by

Ni ¼ log2 1þ 10
SNRi � G� gm þ gc

10

	 
� �
: ð36Þ

The bit rate is computed with the formula

R ¼
X

i¼used tone

Ni

 !
FS

N þ n
ð37Þ

with F s the sample rate.
For the simulations, we take DMT symbol size N ¼ 128, cyclic prefix length n ¼ 8, used tones from 8 to

30, sample rate F s ¼ 552 kHz, and a signal PSD of �38 dBm=Hz.
In Fig. 2, two TEQ algorithms are compared for two TEQ lengths. The first algorithm is the proposed

weighted MMSE channel shortening algorithm (denoted by ‘kS � Bk ¼ 1’), and minimizes the constrained
problem (22) assuming colored noise, i.e., using (31), and a white input signal, i.e., using (29). Note that we
take only the used tones into account in the non-triviality constraint as well as in the cost function (by the
weighting matrix S). The second algorithm is the classical MMSE channel shortening algorithm (denoted
by ‘kbk ¼ 1’), and basically minimizes the constrained problem (22) without taking into account the used
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tones, i.e., we assume S ¼ IN . Note that this means that R ¼
ffiffi
½

p
NInþ1 in (22). Again we assume colored

noise, i.e., we use (31) with S ¼ IN (this leads to R ~N ¼ N2Rnð1 : T ; 1 : TÞÞ, and a white input signal, i.e.,
we use (29) with S ¼ IN (this leads to R ~Xext

¼ N2ILþT � Efx2
l gÞ. Note that except for the fact that a few

matrices in (22) become identity for the classical MMSE channel shortening algorithm, there is no major
difference in complexity between the two approaches. The considered TEQ lengths are 16 and 64. The
weighted MMSE channel shortening algorithm is clearly better than the classical MMSE channel
shortening for T ¼ 64 and for T ¼ 16. The delay dependency is still a problem, but it is clear that when the
equalizer length increases, the difference in smoothness between the two approaches also increases.
In upstream, a relatively small number of tones is used (only 8 up to 30 of the 65 tones). For this reason, the
performance increase with the weighted criterion is more apparent in upstream than in downstream
(see [11, Chapter 3]).
5. Conclusions

Existing MMSE channel shortening algorithms do not correspond to bit rate optimization, which is a
major disadvantage. In this paper, we have modified the classical MMSE channel shortening algorithm by
the introduction of weight matrices in the cost function as well as in the constraint, to explicitly disregard
the unused tones. Simplified formulas for the correlation matrices in the case of white noise and input signal
are derived. Optimizing the weighted MSE can be seen as minimizing a sort of 1/SNR over the subband of
used tones. The weighted MMSE channel shortening shows a significant performance increase in upstream.
Note that the modified weighted cost function still does not correspond to bit rate optimization, but it
comes close.
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Appendix A
Property 1. Suppose FN is the N-point DFT matrix and S is an N 	 N selection matrix that selects the used

tones, i.e., S is an N 	 N diagonal matrix with ones on the positions corresponding to the used tones and zeros

elsewhere. Then the matrix FH
N � S � FN is an N 	 N real symmetric circulant weight matrix.

Proof.
�
 FH
N � S � FN is real: The element on the mth row and the nth column is given by

X
i¼used tone

ej2pmði�1Þ=Ne�j2pði�1Þn=N

¼
X

i¼used tone

ej2pði�1Þðm�nÞ=N (A.1)

¼
X

i¼used tone
i¼2;...;N=2

ej2pði�1Þðm�nÞ=N þ ej2pðN�iþ1Þðm�nÞ=N (A.2)

¼
X

i¼used tone
i¼2;...;N=2

2 cosð2pði � 1Þðm � nÞ=NÞ; (A.3)

where the second equality is due to the fact that if tone i, i ¼ 2; . . . ;N=2, is used, then also tone N � i þ 2
is used. Hence, the element on the mth row and the nth column is real.
�
 FH
N � S � FN is symmetric:

ðFH
N � S � FNÞ

H
¼ FH

N � SH � FN ¼ FH
N � S � FN ðA:4Þ
�
 FH
N � S � FN is circulant: Since FH

N � S � FN can be diagonalized by DFT matrices:

FN � ðFH
N � S � FN Þ � ð1=N � FH

N Þ ¼ S; ðA:5Þ

the matrix FH
N � S � FN is circulant. Moreover, the first column of FH

N � S � FN is given by the DFT of
the vector on the diagonal, i.e., the first column of FH

N � S � FN is given by FN � diagfSg. &
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Appendix B
Property 2. For white additive channel noise nl and a white input signal xl , R ~N and R ~Xext
are given by (28) and

(29), respectively.

Proof. We give the proof for R ~N (a similar proof holds for R ~Xext
). Consider the element on the mth row and

the nth column of R ~N:

R ~Nðm; nÞ ¼ EfNð:;mÞ
H
� FH

N � S � FN �Nð:; nÞg: ðB:1Þ

Suppose mpn (a similar derivation holds for m4n). If n � mXN, the mth and nth column of N have no
common elements. If n � moN, on the other hand, the first N � ðn � mÞ elements of the mth column of N
are equal to the last N � ðn � mÞ elements of the nth column of N. When computing (B.1), only terms that
contain a product of two equivalent noise samples have to be considered, due to the fact that the noise is
assumed to be white. If n � mXN, it is therefore immediately clear that

R ~Nðm; nÞ ¼ 0:

If n � moN, on the other hand, the ðn � mÞth diagonal of the matrix FH
N � S � FN will come into play.

Since FH
N � S � FN is circulant, this ðn � mÞth diagonal contains N � ðn � mÞ times the element aðn�mÞþ1 if

n � m ¼ 0; . . . ;N=2 or N � ðn � mÞ times the element aNþ1�ðn�mÞ if n � m ¼ N=2þ 1; . . . ;N � 1. Hence, we
then obtain

R ~Nðm; nÞ ¼
aðn�mÞþ1ðN � ðn � mÞÞEfn2l g if n � m ¼ 0; . . . ;N=2;

aNþ1�ðn�mÞðN � ðn � mÞÞEfn2l g if n � m ¼ N=2þ 1; . . . ;N � 1:

(
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