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ABSTRACT

In this paper, we describe a distributed delay and sum beamformer
(DDSB) for speech enhancement based on a randomized gossip al-
gorithm. The proposed algorithm operates in a randomly connected
wireless sensor network. Without any network topology constraint,
the DDSB estimates the desired signal at each node by only exchang-
ing information with its neighbors. Since the DDSB performs only
local signal processing, it is robust and scalable for large sensor net-
works and dynamic environments. We show that the DDSB con-
verges to the optimal estimate of the centralized beamformer. Fur-
thermore, we provide a bound for the worst-case averaging time of
the DDSB for the worst connected network. The simulation results
validate the theoretical results of the algorithm.

Index Terms— Distributed delay and sum beamformer, ran-
domized gossip, speech enhancement, wireless sensor networks.

1. INTRODUCTION

Speech enhancement algorithms can be used to improve the quality
and intelligibility of speech in noisy environments for applications
like mobile telephony, hearing aids, human-machine communica-
tion systems, etc. While improvements are generally modest for
single-microphone algorithms, multi-microphone algorithms can
potentially obtain much larger quality and intelligibility improve-
ments by constructing a beamformer. Conventional centralized
speech enhancement beamforming algorithms consider generally a
relatively small number of microphones and process the data cen-
trally. Advances in micro electro-mechanical systems, enable the
use of many low-cost microphones each having their own individual
processor in a wireless sensor network (WSN). For a large WSN, the
centralized beamforming processing, is neither robust nor scalable,
since a single point of failure exists. An alternative is to use dis-
tributed algorithms, e.g., [1][2][3], where each node only exchanges
data with its neighbors and performs local processing of the data.
The distributed algorithms provide robust and scalable solutions for
large networks and unreliable communication environments.

In many situations, distributed estimation algorithms are as-
sumed to operate in a network with a specific topology, such as an
ideal fully connected topology [1] or a tree topology [2]. These algo-
rithms need higher communication costs, as specialized routes need
to be established, and, are not robust for a changing communication
environment. Without any specialized network routing requirement,
the randomized gossip algorithm [4] is attractive for in-network
signal processing. This distributed processing scheme is iterative
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and uses simple computations. In this paper, we investigate the use
of asynchronous randomized gossip within beamforming for speech
enhancement. More specifically, as opposed to the traditional cen-
tralized delay and sum beamformer (CDSB) we present a distributed
delay and sum beamformer (DDSB) which operates in a randomly
connected sensor network via gossip processing. In the DDSB, each
node estimates the desired signal by using only local information
and by performing only local processing, thereby, overcoming the
need to transmit data to other then neighboring nodes. In addition,
the nodes only need to perform relatively simple operations, putting
very low requirements on the node’s processor. As the DDSB is
asynchronous, needs only local communication and performs local
processing, there is no requirement for a special topology and there
is no risk of having a single point of failure.

The proposed DDSB is based on an iterative scheme that con-
verges to the optimal solution of the centralized beamformer. Notice
that the DDSB is a special case of an MVDR beamformer assuming
the noise is uncorrelated across microphones. This is validated for
diffuse noise fields and/or when the distance between microphones is
sufficiently large. We prove that the DDSB converges asymptotically
to the centralized beamformer and derive a bound for the averaging
time in the case of the worst connected network. The algorithm is
adaptive for real-time speech enhancement in dynamic communica-
tion environments without any topological constraints.

This paper is organized as follows. In Sec. 2, the estimation
problem is formulated and notation is given. Then, in Sec. 3, we
discuss the optimal centralized beamformer. In Sec. 4, we briefly
review the randomized gossip algorithm. Subsequently, in Sec. 5,
we describe the proposed DDSB. In addition, we discuss in Sec. 6
the conditions for the DDSB to convergence to the optimal central-
ized beamformer and investigate its convergence rate. In Sec. 7, we
provide some simulation results. Finally, in Sec. 8, conclusions are
drawn.

2. NOTATION

We consider a randomly connected WSN with N nodes, where each
node i computes the noisy speech discrete Fourier transform (DFT)
coefficients Yi(k,m) on a frame-by-frame basis, where k and m
denote the frequency bin and time frame index, respectively. The
DFT coefficients are assumed to be random variables, indicated by
upper case letters, while their realizations will be indicated by lower
case letters. We assume an additive noise model, i.e.,

Yi(k,m) = Xi(k,m) + Vi(k,m), (1)

where Xi(k,m) and Vi(k,m) indicate the speech and noise DFT
coefficients at microphone (node) i, respectively. Further, we assume
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that the speech and noise are uncorrelated, i.e.,

E [Xi(k,m)Vj(k,m)] = 0 ∀ k,m, i, j, (2)

where E[·] denotes the statistical expectation operator. The speech
and noise DFT coefficients are assumed to be independent across
time and frequency, which allows us to omit the time and frequency
indices for notational convenience. We use a stacked vector notation
Y = [Y1, · · · , YN ]T consisting of Yi for all nodes i, where the su-
perscript T denotes transposition of a vector or a matrix. The speech
and noise vector X and V are defined similarly as Y. The WSN
data model for all nodes can then be written as Y = X+V. In this
paper, we consider the case of a single desired speech source. The
speech vector can then be written as

X = dS, (3)

where S is a desired source DFT coefficient, and d models the acous-
tic transfer function from the speech source S to all sensor nodes.

3. CENTRALIZED BEAMFORMER

A centralized beamformer aims to estimate the desired speech DFT
coefficient S by computing a weighted linear combination of the
elements in Y, i.e.,

Z = w
H
Y, (4)

where Z is the estimated clean speech DFT coefficient, w is a vector
with filter coefficients and (·)H denotes Hermitian transposition.

The optimal filter w that minimizes the contribution of interfer-
ences to the output Z subject to the constraint of no speech distortion
can be computed as

min
w

w
H
RYYw, subject to w

H
d = 1, (5)

where RYY is defined as RYY = E[YYH ]. Assuming that Vi,
∀i are zero mean, spatially uncorrelated with power spectral den-
sity (PSD) σ2

Vi
and uncorrelated with the speech source, RVV =

diag
{
σ2
V1
, · · · , σ2

VN

}
and RYY = RXX+RVV. Using the matrix

inversion lemma [5], the filter w that solves the above constrained
optimization problem (5) is given by

w =
R−1

VV
d

dHR−1
VV

d
. (6)

The above made assumption of spatially uncorrelated noise is
validated for a diffuse noise field and/or when the distance between
sensors is sufficiently large. Notice that this version of the delay
and sum beamformer is more general than the generally used de-
lay and sum beamformer, as also presented in [5], as it allows for
different noise PSDs per microphone. The acoustic transfer func-
tions d can be uniquely determined by gain and delay values as
d =

[
a1e

−jωkτ1 , · · · , aNe−jωkτN
]T

, where ai is the damping co-
efficient, and τi denotes the delay in number of samples. The beam-
former output is then given by

Z =

∑N
i=1 ai(σ

2
Vi
)−1ejωkτiYi∑N

i=1 a
2
i (σ

2
Vi
)−1

. (7)

To obtain the optimal central solution (7), the centralized beam-
former requires that there is a central processing unit that has knowl-
edge of all sensor positions (at least relative to the sources) and each
sensor has to broadcast its DFT coefficient Yi to the central proces-
sor. However, the centralized processing will neither be robust nor
scalable when the size of the WSN grows.

4. RANDOMIZED GOSSIP ALGORITHM

In order to guide the reader and help to appreciate the contribution
of this paper, we give in this section a brief overview of the most
essential aspects of the randomized gossip algorithm [4].

The randomized gossip algorithm can be used to solve consen-
sus problems in distributed way. Given a randomly connected
network of N nodes and initial scalar value gi(0) at node i,
the randomized gossip algorithm aims to find the average value
gave = 1

N

∑N
i=1 gi(0) at all nodes by using an iterative scheme

and using only local information and local processing. Let g(t) =
[g1(t), · · · , gN (t)]T denote the vector of values at the end of itera-
tion t. At iteration t, each node in the asynchronous gossip runs an
independent Poisson clock. When node i’s clock ticks, it randomly
selects and communicates with one neighboring node j with proba-
bility pij . All probabilities pij can be stacked in an N×N probabil-
ity matrix p, with pij > 0 if there is a communication link between
node i and node j, otherwise pij = 0. In each iteration, a node i and
a node j exchange their local information and update their current
local estimates as gi(t) = gj(t) = (gi(t− 1) + gj(t− 1)) /2.
Except these two active nodes, other inactive nodes in the network
keep the same estimates as during the last iteration t− 1. A general
vector formulation of the gossip algorithm is given by

g(t) = U(t)g(t− 1), (8)

where U(t) is a randomly selected N ×N dimensional update ma-
trix, which is selected independently across time. For two commu-
nicating nodes i and j at iteration t, the update matrix U(t) is

U(t) = I−
1

2
(ei − ej) (ei − ej)

T , (9)

where ei = [0, · · · , 0, 1, 0, · · · , 0]T is an N dimensional vector
with the ith component equal to 1. When U(t) is a doubly stochas-
tic matrix and the network is connected, all nodes in the network are
guaranteed to converge to the average value gave. We will give a
short summary of the convergence conditions and convergence rate
in Sec. 6, while the detailed proof is given in [4].

5. DISTRIBUTED DELAY AND SUM BEAMFORMER

Unlike the centralized beamformer, the proposed distributed beam-
former broadcasts information of a node i only to one of its neigh-
bors, and aims to obtain the same optimal estimated signal as (7) by
using only local information and local processing.

We assume that each node i in the WSN for a given time frame
has two initial values Ỹi(0) = dHi (σ2

Vi
)−1Yi = ai(σ

2
Vi
)−1ejωτiYi

and d̃i(0) = dHi (σ2
Vi
)−1di = a2

i (σ
2
Vi
)−1, where realizations of Yi

are obtained using the microphone at the node i, and di and σ2
Vi

have
to be estimated. In this paper we assume di is known and estimate
σ2
Vi

using an ideal voice activity detector in order to focus on the
distributed beamforming algorithm. In practice, di can be estimated
and adapted using [6] and the noise PSD σ2

Vi
can be estimated using

e.g., [7]. Let Ỹ(0) be a stacked N dimensional vector defined as
Ỹ(0) = [Ỹ1(0), · · · , ỸN (0)]T , similarly, all d̃i(0) are stacked in an
N dimensional vector d̃(0).

The optimal centralized estimates (7) can be obtained as

Z = Ỹave/d̃ave, (10)

where Ỹave = 1
N
1T Ỹ(0) and d̃ave = 1

N
1T d̃(0) with 1 denoting

the vector of all ones. Then the goal of the algorithm introduced
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in this paper is to find the average value Ỹave and d̃ave in a dis-
tributed way. Based on gossip processing, this algorithm is an itera-
tive scheme referred to as DDSB. The iterative DDSB scheme con-
sidered here is randomized and asynchronous, since at each iteration
a random pair of nodes is active.

Let Ỹ(t) and d̃(t) be defined as vector Ỹ and d̃ at iteration t,
respectively. A general vector form of the DDSB which describes
the current estimate for each iteration t is given by

Ỹ(t) = U(t)Ỹ(t− 1), (11)

d̃(t) = U(t)d̃(t− 1), (12)

Z̃i(t) = Ỹi(t)/d̃i(t), (13)

with Z̃i(t) the DDSB output at iteration t.

6. CONVERGENCE

The convergence of limt→∞ Ỹ(t) to Ỹave1 and limt→∞ d̃(t) to
d̃ave1 is guaranteed for any initial vector Ỹ(0) and d̃(0) as long as
the update matrix is a doubly stochastic matrix [4]. Since Ỹ(t) and
d̃(t) converge, also their ratio converge as long as d̃ave �= 0, i.e.,

Z̃i(t) =
limt→∞ Ỹi(t)

limt→∞ d̃i(t)
= Z.

Let the convergence error be defined as CE =
‖Ỹ(t)−Ỹave1‖

‖Ỹ(0)‖
.

The convergence rate of the algorithm can then in analogy with [4]
be defined by the ε-averaging time Tave(ε, P ) as

sup
Ỹ(0)

inf
t=0,1,···

{P (CE ≥ ε) ≤ ε} , (14)

and can be shown to be bounded by the second largest eigenvalue of
the expected value of the update matrix E [U]. That is [4],

0.5 log ε−1

− log λ2 (E [U])
≤ Tave(ε, E [U]) ≤

3 log ε−1

− log λ2 (E [U])
. (15)

The smaller the magnitude of the eigenvalue λ2 (E [U]), the faster
the convergence will become. For a doubly stochastic probability
matrix p, it can be shown that [4]

E [U] = (1− 1/N) I+ r/N, (16)

with r = (p+pT )/2 and p as definded in Sec. 4. From Eq. (15) and
(16) we see that λ2 (E [U]), and thus the averaging time, depends
on p and thus on the underlying network topology.

In practice, the exact topology is generally unknown. For the
case of a fully connected network and uniform pairwise gossiping,
it was mentioned in [8], that Tave has an upper bound, say Tave,FC ,

which equals Tave ≤ Tave,FC = 3 log ε−1

− log(1−1/N)
. This is thus an up-

per bound for Tave for the best connected network. To be more spe-
cific about the averaging time of the proposed algorithm expressed
in terms of sensors in the network, we will in this section derive an
upper bound for the averaging time for the worst connected network.

To derive such a bound, we constrain matrix p to be doubly
stochastic. In that case, the worst possible connected network is
given by a set of sensors that are connected in a closed circle, where
the probability that a sensor connects to the next (clockwise) sensor
is denoted by q, while the probability that it connects to the previ-
ous (anti-clockwise) sensor is denoted by 1 − q. This leads to the

following p matrix,

p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 q 1− q
1− q 0 q 0

1− q
. . .

. . .
. . .

. . .
. . .

0
. . .

. . . q
q 1− q 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

For this p matrix, the r matrix in Eq. (16) is also doubly stochas-
tic with a similar structure as Eq. (17), but then with q = 0.5.

To obtain a bound of Tave for this network, say Tave,WC , we
need to find the second largest eigenvalue of the matrix expressed
by Eq. (16). Since I(1 − 1

N
) is an identity matrix, it is sufficient

to find the second largest eigenvalue of r = (p + pT )/2 with p

as in (17). Matrix r is known as a scaled Gear-matrix [9]. The
eigenvalues of such a matrix have a special form given by [9] λi =
2β cos(2πn/N), with n ∈ {0, ..., N − 1}, with scaling β = 0.5.

The second largest eigenvalue of E{U} is thus explicitly given
by λ2 = 1 − 1

N
+ 1

N
cos(2π/N). Using Eq. (15) this leads to the

upper bound

Tave ≤ Tave,WC =
3 log ε−1

− log {1− 1
N
(1− cos(2π/N))}

(18)

≤
3N3 log ε−1

(2π)2/2 +
∑

∞

k=2(−1)k+1 N2

(2k)!

(
2π
N

)2k , (19)

where, for going from (18) to (19) we made use of the truncated

Taylor series expansion log {1− x} = −
∑

∞

k=1
xk

k
for −1 ≤ x <

1 and cosx =
∑

∞

k=0(−1)k x2k

(2k)!
[10], to write Tave,WC explicitly

in terms of the number of sensors N .
In conclusion, in case of the worst connected graph, the

averaging-time grows thus in the order O(N3) with the number
of sensors N . However, in many practical situations, the network
graph will be better connected than the worst case scenario con-
sidered here as we will show in Sec. 7. Notice, that for a fully
connected network, Tave grows in the order O(N) [8].

7. SIMULATIONS

We simulated a WSN where N = 20 microphones, a speech source
and a noise source are randomly distributed in a 10× 10 room. The
20 microphones are randomly connected with 60 edges, and gather
noisy speech signals at a sampling frequency of fs = 16kHz. The
desired source signal is a 30 sec. speech signal [11], and the in-
terfering noise source is a zero-mean white Gaussian point source.
All nodes process the signals frame by frame, with a frame length
of 25ms and Hann window. We assume that the distance li be-
tween node i and the desired source is known leading to damping
ai = 1/li and delay τi =

li
c
fs with the speed of sound c = 340m

s
.

For the DDSB, we use a fixed number of iteration per time frame.
The noisy signal per microphone is simulated according to (1) by
properly delaying and scaling the target and interfering signal. The
optimal probability vector pi, i.e., the ith row of p is computed us-
ing only local communication as described in [4]. As a measure to
access the performance of the DDSB, the mean square error (MSE)
for node i and time-frame m is defined as

MSEi(m) =
1

K

K∑
k=1

∥∥∥Ẑi(k,m)− S(k,m)
∥∥∥2

, (20)
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where K is the number of frequency bins, and Ẑi(k,m) is a DFT
coefficient of the beamformer output, i.e., DDSB or CDSB. The
MSE averaged over all time frames is then given by MSE∗

i =
1
M

∑M
m=1 MSEi(m), with M the number of time frames.
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Fig. 1. (a) The MSE of node 2 versus the number of iterations. (b)
The MSE of node 2 with 5 dB input SNR versus iteration step.

Fig. 1(a) shows the MSE between the DDSB output of node
2 and the clean speech signal, compared to the MSE between the
CDSB output and the clean speech signal. As expected, the MSE in
different SNR situations decreases with increasing fixed number of
iterations. We observed that, when each pair of neighboring nodes
communicates frequently enough, the DDSB reaches the same per-
formance as the CDSB. In Fig. 1(b), we show two examples of per
frame convergence in terms of the MSE between the beamformer
output and the desired speech signal versus the iteration number.
Without surprise, the MSE decreases with increasing iterations for
all frames. We see indeed that the DDSB converges asymptotically
to the CDSB.
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Fig. 2. Convergence error CE across time frames.

Next, we compare the convergence error CE for different fixed
number of iterations, to compare how far CE is from ε. At first, we
use Tave,OP which is based on the upper bound in (15) in combina-
tion with the optimal p matrix [4]. We also compare this to the upper
bound of the fully connected network Tave,FC and the upper bound
of the worst connected network Tave,WC . The result is shown in Fig.
2. In addition we show the desired CE for ε = 0.01. It shows that
with both Tave,WC and the optimal Tave,OP , lower convergence er-
ror than the desired CE is obtained, and that with Tave,FC higher

CE than the desired CE is obtained. Given ε, we see that Tave,OP is
the least number of iterations to guarantee convergence ε for a given
connected network, and Tave,WC is the least number of iterations to
guarantee convergence ε given only the network size N .

8. CONCLUSIONS

In this paper, we proposed a distributed delay and sum beamformer
(DDSB), an algorithm for decentralized estimation of the clean
speech signal in a wireless sensor network. The algorithm has no
topology constraints and uses only local information exchange and
local processing, while its output converges asymptotically to the
optimal centralized beamformer. The convergence rate of the DDSB
is inversely proportional to the second largest eigenvalue of the
expected value of the update matrix. Moreover, we described an
upper convergence bound of the DDSB for a given size network.
Finally, we provided simulation results to show the effectiveness
of our algorithm and to show that it converges to the centralized
beamformer.
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