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ABSTRACT

A speech pre-processing algorithm is presented to improve the
speech intelligibility in noise for the near-end listener. The algorithm
improves the intelligibility by optimally redistributing the speech en-
ergy over time and frequency for a perceptual distortion measure,
which is based on a spectro-temporal auditory model. In contrast
to spectral-only models, short-time information is taken into ac-
count. As a consequence, the algorithm is more sensitive to tran-
sient regions, which will therefore receive more amplification com-
pared to stationary vowels. It is known from literature that changing
the vowel-transient energy ratio is beneficial for improving speech-
intelligibility in noise. Objective intelligibility prediction results
show that the proposed method has higher speech intelligibility in
noise compared to two other reference methods, without modifying
the global speech energy.

Index Terms— Near-end speech enhancement, intelligibility
improvement, transients

1. INTRODUCTION
An important goal in speech-communication systems is to transmit
a speech signal, such that it is correctly understood by the receiver.
Examples can be found in the field of telephony and public address
systems. Unfortunately, the speech intelligibility can be harmed due
to background noise. While a decrease in speech intelligibility can
be annoying in a telephone conversation, it could be potentially dan-
gerous in the context of, for example, a voice alarm in a fire detec-
tion system. As illustrated in Fig. 1, the speech intelligibility for
the near-end listener can be affected by background noise from both
sides of the communication channel. That is, the noise can come
from both the far end and the near end. In order to eliminate the
negative impact of the far-end noise, one would typically apply a
single-channel noise-reduction algorithm (see [1] for an overview).
However, the speech can also be pre-processed before playback in
order to become more intelligible in presence of the near-end back-
ground noise, which is the focus in this work.

To improve the speech intelligibility in a noisy environment one
obvious solution would be to increase the playback level. However,
at a certain point increasing the playback level may not be possible
anymore due to loudspeaker limitations. Moreover, unpleasant play-
back levels may be reached which are close to the threshold of pain.
An alternative approach would be to fix the speech energy and re-
distribute energy within the speech signal over time and frequency.
For example, it is well-known that transient parts of speech, e.g.,
consonants, play an important role in speech intelligibility [2], while
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Fig. 1. Application scenario of intelligibility improvement for the
near-end listener.

their energy is relatively low compared to vowels and therefore more
vulnerable to noise. As a consequence, many strategies change the
energy ratio between the vowels and consonants which leads to an
improvement of speech intelligibility in noise [3, 4, 5]. However,
these strategies are applied independent of the near-end noise, while
for certain applications knowledge of the noise statistics are avail-
able and can be exploited. More recently, Sauert and Vary proposed
several algorithms [6, 7], which take into account the noise. These
methods improve objective speech intelligibility as predicted by the
speech intelligibility index (SII) [8]. However, these methods only
change the spectrum of the speech and do not use some type of con-
sonant detection strategy. Therefore, the benefits from the earlier
mentioned transient-enhancement strategies may not be present in
this method.

In this work we present a method where the speech energy is
optimally re-distributed as a function of the near-end noise, relevant
for a perceptual distortion measure. We assume that the recorded
noisy speech from the near-end is of good quality and intelligibility.
This work contributes due to the fact that the considered distortion
measure is based on a spectro-temporal auditory model in contrast to
a spectral-only model as in [6, 7]. Therefore, the proposed method
is more sensitive to transient regions which will receive more ampli-
fication compared to vowels.

2. PROPOSED SPEECH PRE-PROCESSING ALGORITHM

Let x denote a time-domain signal representing clean speech and
x + ε a noisy version, where ε represents background noise. The
distortion measure considered in this work, denoted byD (x, ε), will
inform us about the audibility of ε in the presence of x. Hence, a
lower D value implies less audible noise and therefore more audible
speech. Our goal is to adjust the speech signal x such that D (x, ε)
is minimized subject to the constraint that the energy of the modified
speech remains unchanged.

First, in Section 2.1 more details will be given about the consid-
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ered distortion measure, after which in Section 2.2 we will formalize
and solve the constrained optimization problem. In Section 2.3 some
properties of the algorithm are revealed.

2.1. Perceptual Distortion Measure

The perceptual distortion measure is based on the work from [9],
which takes into account a spectro-temporal auditory model and
therefore also considers the temporal envelope within a short-time
frame (20-40 ms), in contrast to spectral-only models. As a conse-
quence, the distortion measure is more sensitive to transients, which
are of importance for speech intelligibility.

First, a time-frequency (TF) decomposition is performed on the
speech and noise by segmenting into short-time (32 ms), 50% over-
lapping Hann-windowed frames. Then, a simple auditory model is
applied to each short-time frame, which consists of an auditory fil-
ter bank followed by the absolute squared and low-pass filtering per
band, in order to extract a temporal envelope. Here, the filter bank re-
sembles the properties of the basilar membrane in the cochlea, while
the envelope extraction stage is used as a crude model of the hair-cell
transduction in the auditory system.

Let hi denote the impulse response of the ith auditory filter and
xm the mth short-time frame of the clean speech. Their linear con-
volution is denoted by xi,m = xm ∗ hi. Subsequently, the temporal
envelope is defined by |xm,i|

2 ∗hs, where hs represents the smooth-
ing low-pass filter. Similar definitions hold for |εm,i|

2 ∗ hs. The
cutoff frequency of the low-pass filter determines the sensitivity of
the model towards temporal fluctuations within a short-time frame1.
The audibility of the noise in presence of the speech, within one
TF-unit, is determined by a per-sample noise-to-signal ratio [9]. By
summing these ratios over time, an intermediate distortion measure
for one TF-unit is obtained denoted by lower-case d. That is,

d (xm,i, εm,i) =
∑
n

(
|εm,i|

2 ∗ hs

)
(n)(

|xm,i|
2 ∗ hs

)
(n)

, (1)

where n denotes the time index running over all samples within one
short-time frame. The distortion measure for the complete signal
is then obtained by summing all the individual distortion outcomes
over time and frequency, which gives,

D (x, ε) =
∑
m,i

d (xm,i, εm,i). (2)

2.2. Power-Constrained Speech-Audibility Optimization

To improve the speech audibility in noise, we minimize Eq. (2) by
applying a gain function α which redistributes the speech energy,
i.e., αm,ixm,i, where αm,i ≥ 0. Only TF-units are modified where
speech is present. This is done in order to prevent that a large amount
of energy would be redistributed to speech-absent regions. We con-
sider a TF-unit to be speech-active, when its energy is within a 25
dB range of the TF-unit with maximum energy within that particu-
lar frequency band. The noise is assumed to be a stochastic process
denoted by Em,i and the speech deterministic (recall that the speech
signal is known in the near-end enhancement application). Hence,
we minimize for the expected value of the distortion measure. Let
L denote the set of speech-active TF-units and ‖·‖ the �2-norm, the
problem can then be formalized as follows,

1the envelopes for the auditory filters with low center frequencies are al-
ready low-pass signals, therefore for complexity reasons these low-pass fil-
ters may be discarded.

min
αm,i,{m,i}∈L

∑
{m,i}∈L

E[d (αm,ixm,i, Em,i)] s.t.
∑

{m,i}∈L

‖αm,ixm,i‖
2=r,

(3)
where r =

∑
{m,i}∈L ‖xm,i‖

2 relates to the power constraint. By
using the method of Lagrange multipliers we introduce the following
cost function,

J =
∑

{m,i}∈L

E[d (αm,ixm,i, Em,i)]+λ

⎛
⎝ ∑

{m,i}∈L

‖αm,ixm,i‖
2−r

⎞
⎠ .

(4)
Due to the linearity of the convolution in Eq. (1) and the assumption
that α ≥ 0 we have that d (αx, y) = d (x, y) /α2. Therefore, we
have to solve the following set of equations for α for minimizing
Eq. (4),

∂J
∂αm,i

= −2
E[d(xm,i,Em,i)]

α3

m,i

+ λ2αm,i ‖xm,i‖
2 = 0

∂J
∂λ

=
∑

{m,i}∈L

α2

m,i ‖xm,i‖
2 − r = 0

(5)

The solution is given by,

α2

m,i =
rβ2

m,i∑
{m′,i′}∈L

β2

m′,i′ ‖xm′,i′‖
2
, (6)

where,

βm,i =

(
E [d (xm,i, Em,i)]

‖xm,i‖
2

)
1/4

. (7)

In order to determine α we have to evaluate the expected value
E [d (xm,i, Em,i)], which can be expressed as follows,

E [d (xm,i, Em,i)] =
∑
n

(
E
[
|Em,i|

2
]
∗ hs

)
(n)(

|xm,i|
2 ∗ hs

)
(n)

, (8)

To simplify, we assume that the power-spectral density of the noise
within the frequency range of an (relatively narrow) auditory band
is constant, i.e., has a ’flat’ spectrum. As a consequence, the noise
within an auditory band can be modeled by Em,i = (wmNm,i) ∗
hi, where wm denotes the window function and Nm,i represents a
zero mean, i.i.d. stochastic process with variance E

[
N2

m,i (n)
]
=

σ2

m,i, ∀n. By combining this statistical model and the numerator of
Eq. (8) we have,

E
[
|Em,i|

2(n)
]
= E

[∣∣∣∣∑
k

hi (k)wm (n−k)Nm,i (n−k)

∣∣∣∣
2
]

=
∑
k

h2

i (k)w
2

m (n−k)E
[
N2

m,i (n−k)
]

=
(
h2

i ∗ w
2

m

)
(n)σ2

m,i.
(9)

Here σ2

m,i is estimated with the noise PSD estimator from [10] by
taking the average PSD within an auditory band.

As a final step, an exponential smoother is applied to αm,i in
order to prevent ’musical noise’ which may negatively effect the
speech quality2,

2The energy of the signals is normalized to account for the small possible
error introduced due to the exponential smoother
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Fig. 2. 25%-75% quantile range of noise (dark-gray) and speech
(light-gray) log-spectral magnitudes before and after processing for
white noise and babble noise.

α̂m,i = (1− γ)αm,i + γα̂m−1,i, (10)

where γ = 0.9.
To reduce complexity, the filter bank and the low-pass filter are

applied by means of a point-wise multiplication in the DFT-domain
with real-valued, even-symmetric frequency responses3. For the
filter bank the approach as presented in [11] is used and for the
low-pass filter the magnitude response of a one-pole low-pass fil-
ter is used. A total amount of 40 ERB-spaced filters are considered
between 150 and 5000 Hz. Furthermore, the speech signal is re-
constructed by addition of the scaled TF-units where a square-root
Hann-window is used for analysis/synthesis.

2.3. Algorithm Analysis

Fig. 2 illustrates the effect of the proposed algorithm in the frequency
domain for white noise and babble noise. Here the 25%-75% quan-
tile range is shown for all speech and noise short-time DFT mag-
nitudes for one sentence, denoted by the light and dark area, re-
spectively. The top row shows the results for white noise and the
bottom row for babble noise, before (left) and after (right) process-
ing. Note that the energy before and after processing remaines un-
changed. Overall it can be observed that the speech audibility is
clearly improved for both noise types over frequency. To accom-
plish this, the algorithm gives the speech more or less the average
spectral shape of the noise. It is known from literature that this type
of frequency shaping of the speech signal indeed improves intelligi-
blity [6]. However, rather than a heuristic choice this is a direct result
of the optimal derivations from the previous section which take into
account the power constraint.

The cutoff frequency of the auditory model lowpass filter hs

(see Section 2.1) determines the temporal sensitivity of the distor-
tion measure. For example, a higher cutoff frequency will result in
a larger intermediate distortion value for transient signals while a
cutoff of 0 Hz would equal a spectral-only distortion measure. To
demonstrate the benefits of taking into account short-time informa-
tion, i.e., a cutoff frequency larger than zero, its effect is shown in

3This particular choice will lead to time-domain aliasing due to circular
convolution, however, the applied window function will minimize the effect
of these unwanted artifacts.
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Fig. 3. Unprocessed and processed speech for the Dutch excerpt
’Tom tekent’ (’Tom draws’ in English) for three different auditory
model cutoff frequencies. Notice that the consonant ’t’ is automati-
cally amplified when the cutoff frequency is increased.

Fig. 3. Here, the Dutch speech excerpt ’Tom tekent’ (’Tom draws’ in
English) is degraded with white noise at -5 dB SNR (noise signal is
not shown for visibility) where three cutoff frequencies are consid-
ered: 0, 125 and 250 Hz. The plots clearly show that the proposed
algorithm distributes more energy to the transient regions when the
cutoff frequency is increased, from which we know that this will
improve speech intelligibility [4, 5]. This means that the vowel-
consonant energy ratio can be adjusted automatically with only one
parameter. Based on informal listening tests the cutoff frequency is
set to 125 Hz.

3. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed (PROP) method and
compare it to several reference methods, speech is degraded with
babble, F16, factory and white noise for an SNR-range between -15
and 5 dB. In total, 50 random sentences from a female speaker are
used from the Dutch matrix test [12]. For all experiments a sample
rate of 16000 Hz is used. A comparison is made with two other algo-
rithms. That is, the method of maximal power transfer proposed by
Sauert et. al (SAU) [6] which applies a TF-dependent gain function
and takes into account the noise. Secondly, our results are com-
pared with the method from [4] which modifies the vowel-transient
ratio. In our experiments, the energy is redistributed for a complete
sentence at once (around 3 seconds). Applications for this situation
would be when the speech is pre-recorded in environments where the
noise is known, e.g., navigation voice in a car or safety announce-
ments in an airplane. Note, that the delay of the proposed method
can be reduced by restricting the amount of TF-units in L taken into
account from the past. In near future research we will evaluate low-
delay performance of the algorithm.

Two objective intelligibility predictors are applied before and
after processing. The first method is the short-time objective intel-
ligibility (STOI) measure [13] and the second measure is the coher-
ence speech intelligibility index (CSII) [14]. Both measures can pre-
dict the intelligibility of noisy speech and various nonlinear speech
degradations. The results are shown in Figs. 4 and 5, where the plots
show that for all noise types a significant intelligibility improvement
is predicted. A conclusion which is in line with informal listening
tests. The proposed method shows better performance compared to
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Fig. 4. STOI intelligibility predictions for the proposed method
(PROP), the unprocessed noisy speech (UN), the method from
Sauert et. al [6] and a method based on voiced/unvoiced energy
redistribution [4]. A higher STOI-score denotes better intelligibility.

the reference methods for all noise types.

4. CONCLUDING REMARKS
A speech pre-processing algorithm is presented to improve the
speech intelligibility in noise for the near-end listener. This was ac-
complished by optimally redistributing the speech energy over time
and frequency based on a perceptual distortion measure. Due to the
fact that the distortion measure takes into account short-time infor-
mation, transient signals, which are more important for speech intel-
ligibility than vowels, receive more amplification. Objective intelli-
gibility prediction results show that with the proposed algorithm, the
SNR can be lowered 3-5 dBs without losing intelligibility.
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