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ABSTRACT

In this paper, we analyze the minimum mean square error (MMSE)

based spectral noise power estimator [1] and present an improve-

ment. We will show that the MMSE based spectral noise power

estimate is only updated when the a posteriori signal-to-noise ratio

(SNR) is lower than one. This threshold on the a posteriori SNR

can be interpreted as a voice activity detector (VAD).

We propose in this work to replace the hard decision of the

VAD by a soft speech presence probability (SPP). We show that

by doing so, the proposed estimator does not require a bias cor-

rection and safety-net as is required by the MMSE estimator pre-

sented in [1]. At the same time, the proposed estimator maintains

the quick noise tracking capability which is characteristic for the

MMSE noise tracker, results in less noise power overestimation and

is computationally less expensive.

Index Terms— Noise power estimation, speech enhancement,

noise reduction.

1. INTRODUCTION

Portable digital communication devices, such as hearing aids or mo-

bile telephones, are often used in noisy environments. The noise

signal that corrupts the target speech signal can be locally quite

nonstationary. Nonstationary noise corruptions can be caused for

example by passing cars when communicating while walking along

the street, or babble noise while in the cafeteria or at a party. Speech

enhancement algorithms aim at reducing the additive noise while

keeping the target speech signal unaffected. One of the most impor-

tant parameters of speech enhancement algorithms is the spectral

noise power. The spectral noise power can be estimated whenever

we know that speech is absent. However, in nonstationary noise

scenarios the estimation of the noise power is particularly difficult

as the it may change rapidly over time. Then, the estimated noise

power has to be updated as often as possible, requiring a robust

voice activity detector (VAD). However, deciding whether speech is

present or absent is more difficult the more nonstationary the noise

source is, as a sudden rise in the noise power may be misinterpreted

as a speech onset.

Several approaches have been proposed for the estimation of

the noise power. Among the most established estimators are those

based on minimum statistics [2], [3]. For instance, in [2] the power

of the noisy signal is estimated and observed over a time-span of

∗The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme under Grant Agree-
ment PIAP-GA-2008-214699.

†The research is supported by the Dutch Technology Foundation STW.

about 1-3 seconds. The spectral noise power is then inferred from

the minimum of the estimated power of the noisy signal, assum-

ing that speech is absent at least for a short duration within the

observed time-span. However, if the noise power rises within the

observed time-span, the noise power will be underestimated. While

in [2] mechanisms are proposed that allow for a tracking of rising

noise powers within the observed time-span, rising noise powers as

caused e.g. by passing cars, are usually tracked with a rather large

delay. The local underestimation of the noise power is likely to re-

sult in annoying artifacts, so-called musical noise, when the noise

power estimate is applied in a speech enhancement framework.

More recent spectral noise power estimators allow for a quicker

tracking of the noise spectral power, e.g. the subspace-DFT ap-

proach [4], or minimum mean square error (MMSE) based ap-

proaches [5], [1]. While subspace based approaches are computa-

tionally rather demanding, the MMSE based algorithm [1] is com-

putationally much less demanding and at the same time robust to

increasing noise levels [6]. In the MMSE based estimator [1], first a

limitedmaximum likelihood (ML) estimate of the a priori signal-to-

noise ratio (SNR) is used to estimate the periodogram of the noise

signal. However, this simple estimate results in a bias, which is

then compensated based on a second estimate of the a priori SNR.

In this work, we analyze the MMSE based estimator presented in

[1] and present an improvement that makes the bias compensation

unnecessary.

This work is organized as follows: after explaining the nota-

tions and assumptions in Section 2, we show in Section 3 that the

MMSE based noise power estimator of [1] can be interpreted as

a VAD based noise power estimator, where the noise power esti-

mate is only updated if the a posteriori SNR is smaller than one.

Then, in Section 4 we propose to replace the VAD of [1] by a soft

speech presence probability (SPP), without the need of applying a

bias compensation. In Section 5 we show that the proposed estima-

tor results in a similar noise tracking performance as the estimator in

[1], while being computationally and memory-wise more efficient.

2. SIGNALMODEL

We assume the speech and noise signals to be additive in the short-

time Fourier domain. The complex spectral noisy observation is

thus given by Yk(l) = Sk(l) + Nk(l), where k is the frequency

index, l is the segment index, Sk are the complex spectral speech

coefficients and Nk are the complex spectral noise coefficients. For

each k, the spectral speech and noise power are defined as σ2
S,k(l) =

E
(
|Sk(l) |2

)
and σ2

N,k(l) = E
(
|Nk(l) |2

)
, respectively. In the se-

quel, we omit the time and frequency index wherever possible. We

define the a posteriori SNR as γ = |Y |2/σ2
N and the a priori SNR
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as ξ = σ2
S /σ2

N . We assume that the speech and noise signals are

uncorrelated and have zero mean so that E
(
|Y |2

)
= σ2

S + σ2
N . In

addition, we assume that the real and imaginary part of the noise

and speech spectral coefficients are independent and Gaussian dis-

tributed. Furthermore, estimated quantities are denoted by a hat

symbol, e.g. ξ̂k is the estimate of ξk.

3. REVIEW OF MMSE BASED NOISE POWER

ESTIMATION

In [5], [1] it is proposed to estimate the spectral noise power from

an MMSE estimate of the noise periodogram. Given an estimate

of the a priori SNR ξ and an estimate of the noise power σ2
N , the

estimate of the noise periodogram is obtained as

|N̂ |2 = E
(
|N |2 | Y

)
=

(
1

1 + ξ̂

)2

|Y |2 +
ξ̂

1 + ξ̂
σ̂2
N . (1)

Assuming that the spectral noise power does not change abruptly

from one signal segment to the other, it is reasonable to employ

the noise power estimate of the previous frame σ̂2
N = σ̂2

N(l − 1) in
(1). However, as the speech signal may change quickly over time,

finding an appropriate estimate for the a priori SNR in (1) is rather

difficult. In [1] a limited ML is employed as detailed in Section 3.1.

After estimating the noise periodogram via (1), the noise power

spectral density is updated by a recursive smoothing, as

σ̂2
N(l) = α σ̂2

N(l − 1) + (1− α) |N̂(l)|2, (2)

where, as in [1], we choose α = 0.8.
Taking the expectation of (1) with respect to Y , we obtain

EY

(
E
(
|N |2 | Y, σ̂2

N , σ̂2
S

))
=

(
σ̂2
N

σ̂2
S + σ̂2

N

)2

(σ2
S + σ2

N) +
σ̂2
S

σ̂2
S + σ̂2

N

σ̂2
N , (3)

where we now explicity state that the estimator requires knowing

σ̂2
N and σ̂2

S . From (3) it follows that if σ̂2
S = σ2

S and σ̂2
N = σ2

N (1)

is unbiased and we have EY

(
E
(
|N |2 | Y, σ2

N , σ2
S

))
= σ2

N . On the

other hand, if σ̂2
S 6= σ2

S and/or σ̂2
N 6= σ2

N the estimator is biased,

and we have EY

(
E
(
|N |2 | Y, σ̂2

N , σ̂2
S

))
6= σ2

N . However, to com-

pensate for the bias, again the true noise and speech spectral power

are required.

3.1. Interpretation as a voice activity detector

In [1] it is proposed to employ a limited ML estimate of the a priori

SNR in (1). In this section we show that by this the MMSE estimate

of the noise periodogram is only updated when the a posteriori SNR

is smaller than 1. This thresholding of the a posteriori SNR can be

interpreted as a VAD; the spectral noise power is only updated when

there is speech absence according to the a posteriori SNR.

In the way we wrote (1), it can be seen that the MMSE solution

results in a weighted sum of the noisy observation and the previous

estimate of the spectral noise power σ̂2
N . The weights are a function

of the a priori SNR and gradually take values between zero and one,

i.e., a soft decision between |Y |2 and σ̂2
N . However, in [1] a limited

ML estimate of the a priori SNR is employed, which is obtained, as

ξ̂ = max
(
0, ξ̂ ml

)
= max(0, γ̂ − 1) , (4)

where γ̂(l) = |Y (l)|2/σ̂2
N(l−1). Substituting (4) and σ̂2

N = σ̂2
N(l−

1) into (1) we see that the MMSE estimator can be seen as a VAD

based detector, as

|N̂(l)|2 = E
(
|N(l)|2 | Y (l)

)
=

{
σ̂2
N(l − 1) , if γ̂(l) ≥ 1

|Y (l)|2 , if γ̂(l) < 1,
(5)

Using the a priori SNR estimator from (4) we thus have a hard

instead of a soft decision between the noisy observation and the

estimate of the spectral noise power σ̂2
N(l − 1).

In [1] the bias is derived for the case that the limited ML esti-

mate of (4) is employed. However, the resulting bias again depends

on the true and unknown a priori SNR. In [1] this a priori SNR is

estimated using the decision-directed approach [7].

3.2. Safety-net

In addition to the bias compensation, in [1] a so-called safety-net is

employed to prevent the spectral noise power tracker from stalling

when the noise level would make an abrupt step from one segment

to the next. In this safety-net, the last 0.8 seconds of the noisy

speech periodogram, i.e. 50 signal segments |Y (l)|2, are stored.

The final estimate of the spectral noise power is obtained by com-

paring the current noise power estimate to the minimum of the last

0.8 seconds of |Y (l)|2, as
σ̂2
N ← max

(
σ̂2
N , min

(
|Y (l − 49)|2, ..., |Y (l)|2

))
. (6)

4. PROPOSED APPROACH: SPP INSTEAD OF VAD

Instead of first using a limitedML estimate for the a priori SNR that

results in the VAD behavior explained by (5), we argue in this paper

that neither a bias compensation nor the safety-net of Section 3.2 is

necessary if the hard decision of the VAD (5) is exchanged by a soft

decision by means of the probability of speech presence.

Under speech presence uncertainty, an MMSE estimator for the

noise periodogram is given by

E
(
|N |2 | Y

)
= P (H0 | Y ) E

(
|N |2 | Y,H0

)

+ P (H1 | Y ) E
(
|N |2 | Y,H1

)
, (7)

where H0 indicates speech absence, while H1 indicates speech

presence.

4.1. Estimation of the speech presence probability

As for the derivation of (1), we assume that the real and imagi-

nary parts of the speech and noise spectral coefficients are Gaus-

sian distributed. With Bayes’ theorem, assuming uniform priors

P (H0) = P (H1), follows the probability of speech presence, e.g.

[8]

P (H1 | Y ) =

(
1 + (1 + ξopt) exp

(
−|Y |

2

σ̂2
N

ξopt

1 + ξopt

))−1

.

(8)

While in (1) ξ̂ is the local SNR, in (8) the a priori SNR ξopt reflects

the SNR that is typical if speech were present [9]. In the radar or

communication context, one would choose ξopt in order to guar-

antee a specified performance in terms of false alarms or missed

detections [10]. Similarly, we find the fixed optimal a priori SNR

10 log10(ξopt) = 15 dB by minimizing the total probability of er-

ror when the true a priori SNR lies between −∞ and 20 dB, as

detailed in [9].
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4.2. Derivation of E
(
|N |2|Y,H0

)
and E

(
|N |2|Y,H1

)

From (8) it is possible to derive an expression for the a posteriori

SNR γ = |Y |2/σ̂2
N in terms of ξopt and P (H1 | Y ), that is,

γ = log

(
1 + ξopt

P (H1 | Y )−1 − 1

)
1 + ξopt

ξopt
. (9)

From this expression it follows that already for P (H1 | Y ) >
0.075, the a posteriori SNR satisfies γ > 1 if 10 log10(ξopt) =
15 dB. From this it can be concluded that under speech presence,

i.e., when P (H1 | Y ) is sufficiently high, the ML estimate of the a

priori SNR from (4) can be rewritten as ξ̂ ml = γ̂ − 1. The optimal

estimator under speech presence can now be computed as

E
(
|N |2 | Y, ξ̂,H1

)
= E

(
|N |2 | Y, ξ̂ ml = γ̂ − 1

)
= σ̂2

N ,

which follows from substitution of ξ̂ ml = γ̂ − 1 into (1). Un-

der speech absence we have Y = N and thus E
(
|N |2 | Y,H0

)
=

E
(
|N |2 | N

)
= |N |2 = |Y |2. Then, similar to (1), we obtain

|N̂ |2 = E
(
|N |2 | Y

)
= P (H0 | Y ) |Y |2 +P (H1 | Y ) σ̂2

N , (10)

where P (H0 | Y ) = 1 − P (H1 | Y ) and we employ the spec-

tral noise power estimated of the previous frame σ̂2
N . The spectral

speech power is then obtained by a recursive smoothing of |N̂ |2 as

given in (2).

4.3. Avoiding stagnation

From (8) it can be seen that if the spectral noise power is under-

estimated, it may occur that P (H1 | Y ) = 1 even though |Y |2 is

small with respect to the true, but unkown, noise power. Then, due

to (10), the noise power may not be updated anymore, such that the

noise power remains underestimated. To check and overcome that

this happens, we recursively smooth P (H1 | Y ) over time by,

P(l) = 0.9 P(l − 1) + 0.1 P (H1 | Y (l)) , (11)

and force the current estimate P (H1 | Y ) to be smaller than one, if

P(l) is larger than a threshold, as

P (H1 | Y (l))←
{

min(0.99, P (H1 | Y (l))) ,P(l) > 0.99

P (H1 | Y (l)) , else.

(12)

This procedure fits well into the framework and is more memory

efficient than the safety-net of Section 3.2 as we do not need to

store 0.8 seconds of data. The proposed SPP based algorithm is

summarized in Algorithm 1.

In Section 5 we show that the proposed approach results in

slightly better results than the estimator proposed in [1], but does

not require a bias correction and requires less memory storage.

5. EVALUATION

In this section, we compare the proposed spectral noise power esti-

mators to the minimum statistics approach [2] and the MMSE ap-

proach with bias compensation proposed in [1]. For the evaluation

we employ 320 sentences from the TIMIT database [11] and several

synthetic and natural noise sources. In these evaluations we set the

sampling rate at fs = 16 kHz. Further, we use a Hann-window of

Algorithm 1 The proposed algorithm for noise power estimation.

1: for all signal segments l do

2: Compute the a posteriori SPP

P (H1 | Y ) =
(
1+(1+ξopt) exp

(
− |Y |2

σ̂2
N

ξopt
1+ξopt

))−1

where σ̂2
N is the noise power estimate of the previous frame

and 10 log10(ξopt) = 15 dB.

3: Compute a smoothed a posteriori SPP, as

P(l) = 0.9 P(l − 1) + 0.1 P (H1 | Yk(l)) .

4: Avoid stagnation, as

P (H1 | Y (l))←
{

min(0.99, P (H1 | Y (l))) ,P(l) > 0.99

P (H1 | Y (l)) , else.

5: Update the noise periodogram estimate as

|N̂ |2 = P (H0 | Y ) |Y |2 + P (H1 | Y ) σ̂2
N .

6: Obtain spectral noise power estimate by temporal smoothing

σ̂2
N(l) = 0.8 σ̂2

N(l − 1) + 0.2 |N̂(l)|2.
7: end for

length N = 512 for spectral analysis, where successive segments

overlap by 50%.

As proposed in [12] we compare the estimated noise power σ̂2
N,k

to a reference σ2
N,k in terms of the log-error distortion measure. In

contrast to [12], we separate the error measure into over and under

estimation, i.e.

LogErr = LogErrOver + LogErrUnder, (13)

where LogErrOver measures the contributions of an overestima-

tion of the true noise power, as

LogErrOver =
1

NL

L−1∑

l=0

N−1∑

k=0

∣∣∣∣∣min

(
0, 10 log10

(
σ2
N,k(l)

σ̂2
N,k(l)

))∣∣∣∣∣ ,

while LogErrUnder measures the contributions of an underestima-

tion of the true noise power, as

LogErrUnder =
1

NL

L−1∑

l=0

N−1∑

k=0

max

(

0, 10 log10

(
σ2
N,k(l)

σ̂2
N,k(l)

))

.

Note that an overestimation of the true noise power, as indicated

by LogErrOver, is likely to result in an attenuation of the speech

signal in a speech enhancement framework and thus in speech dis-

tortions. On the other hand, at time-frequency points where the

noise power is underestimated, the noise signal is not reduced to the

same extend as for the true noise power. Furthermore, if the noise

power is underestimated locally, isolated time-frequency points are

not attenuated, which may result in annoying artifacts perceived as

so-called musical noise.

As noise types, we consider modulated white Gaussian noise,

passing cars noise, nonstationary vacuum cleaner noise, and babble

noise. The modulated noise is modulated with fmod = 0.5 Hz us-

ing the function f(m) = 1 + 0.5 sin(2πmfmod/fs), where m is

the sample index.

For the synthetic modulated white noise, the true noise power is

known and is thus used for the evaluation. For the remaining non-

stationary and thus non-ergodic noise sources the determination of

the true spectral noise power is impossible, as only one realization
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(b) Passing-cars noise
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(c) Babble noise
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(d) Vacuum cleaner

Figure 1: Comparison in terms of the LogErr for 320 TIMIT sen-

tences and various input SNRs. The lower part of the bars represents

the amount of noise power overestimation LogErrOver, while the
upper part represents the noise underestimation LogErrUnder. The
total height of the bars corresponds to LogErr.

of the random variable is available in each time-frequency point.

Therefore, we use the periodogram of the noise-only signal as an

estimate of the true noise power, e.g. σ2
N,k = |N |2.

The results of our evaluation are given in Figure 1. It can be

seen that for the modulated white Gaussian noise, the minimum

statistics approach is not able to follow the rapid changed of the

noise signal, resulting in a large amount of noise underestimation

that is likely to result in musical noise in a speech enhancement

framework. For the natural noise sources we considered, passing

car noise, babble noise and vacuum cleaner noise, this effect is not

as dramatic as for the synthetic modulated Gaussian noise, but still,

the minimum statistics approach results in the largest noise underes-

timation, and is thus likely to result in the largest amount of musical

noise. Comparing the proposed SPP based estimator to the MMSE

based estimator [1] it can be seen that the overall performance in

terms of the LogErr is rather similar. However, the MMSE [1] ap-

proach has the tendency to overestimate the noise power most. This

may be because the bias compensation factor multiplied to the esti-

mated noise signal in [1] is always larger or equal to one, even when

the noise power estimate of the previous frame was overestimated.

While obtaining similar results in terms of the LogErr, the pro-
posed SPP based estimator is more computationally and memory

efficients, as we do not require to store 0.8 seconds of data for the

safety-net of Section 3.2, nor do we need to compute the incomplete

gamma function necessary for the bias compensation in [1].

The code for this noise power estimator is available at www.

ee.kth.se/˜gerkmann/sppBasedNoisePow.

6. CONCLUSIONS

In this work, we have refined the minimum mean square error

(MMSE) based noise power estimator [1]. We have shown that

when a limited maximum likelihood (ML) estimator is used for the

estimation of the a priori signal-to-noise ratio (SNR), the resulting

noise power estimate is only updated when the a posteriori SNR

is below a certain threshold. We have argued that this thresholding

can be interpreted as a voice activity detector (VAD). In addition, in

order to function properly, the estimator in [1] requires a bias com-

pensation and a so-called safety-net that requires storing the last 0.8

seconds of data.

In this paper we have shown that the bias compensation and

the safety-net are unnecessary if the hard decision of the VAD is

replaced by a soft speech presence probability (SPP) estimator. The

proposed estimator is more memory efficient and results slightly

better performance than the estimator from [1].
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