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Existing objective speech-intelligibility measures are suitable for several types of degradation,

however, it turns out that they are less appropriate in cases where noisy speech is processed by a

time-frequency weighting. To this end, an extensive evaluation is presented of objective measure

for intelligibility prediction of noisy speech processed with a technique called ideal time frequency

(TF) segregation. In total 17 measures are evaluated, including four advanced speech-intelligibility

measures (CSII, CSTI, NSEC, DAU), the advanced speech-quality measure (PESQ), and several

frame-based measures (e.g., SSNR). Furthermore, several additional measures are proposed. The

study comprised a total number of 168 different TF-weightings, including unprocessed noisy

speech. Out of all measures, the proposed frame-based measure MCC gave the best results

(q¼ 0.93). An additional experiment shows that the good performing measures in this study also

show high correlation with the intelligibility of single-channel noise reduced speech.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3641373]
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I. INTRODUCTION

Speech processing systems often introduce degradations

and modifications to speech signals, e.g., quantization noise

in a speech coder or residual noise and speech distortion in a

noise reduction scheme. To determine the perceptual conse-

quences of these artifacts, the algorithm at hand can be

evaluated by means of a listening test or an objective

machine-driven quality assessment. Although a listening test

can lead to a judgment as observed by the intended group of

users, such tests are often costly and time consuming. There-

fore, accurate and reliable objective evaluation methods are

of interest since they might replace a listening test, at least in

some stages of the algorithm development process. Although

it is not straightforward to describe the overall quality of a

speech processing system, people tend to divide the evalua-

tion into the attributes of speech quality (i.e., pleasantness/

naturalness of speech) and speech intelligibility. The primary

focus of this work is on speech intelligibility.

One of the first objective intelligibility measures was

developed at AT&T Bell Labs around 1920 and eventually

published by French and Steinberg (1947). Kryter (1962)

made the measure better accessible by proposing a calcula-

tion scheme, which is currently known as the articulation

index (AI). The basic approach of AI is to determine the sig-

nal-to-noise ratio (SNR) within several frequency bands; the

SNRs are then limited, normalized and subjected to auditory

masking effects and are eventually combined by computing

a perceptually weighted average. This approach evolved to

the speech intelligibility index (SII) and was standardized

under S3.5-1997 ANSI (1997). Since AI is mainly meant for

simple linear degradations, e.g., additive noise, Steeneken

and Houtgast (1980) proposed the speech transmission index

(STI), which is also able to predict the intelligibility of rever-

berated speech and non-linear distortions. For this objective

measure, a noise signal with the long-term average spectrum

of speech is amplitude modulated at several modulation fre-

quencies with a cosine function and applied to the communi-

cation channel. The eventual outcome of the STI is then

based on the effect on the modulation depth within several

frequency bands at the output of the communication channel.

While the STI is based on changes in the temporal modula-

tion domain, the spectro-temporal modulation index (STMI)

proposed by Elhilali et al. (2003) takes into account joint
spectro-temporal modulations. They show that STMI is also

applicable for joint spectro-temporal distortions like phase

jitter distortions and phase shifts next to additive noise and

reverb. The majority of recently published models are still

based on the fundamentals of AI (e.g., Rhebergen and

Versfeld, 2005; Kates and Arehart, 2005) and STI (for an

overview see Goldsworthy and Greenberg, 2004).

In contrast to speech intelligibility, for speech-quality

prediction a wide variety of objective measures are available

[see, e.g., Loizou (2007) and Deller, Jr. et al. (1993) for an

overview]. Quackenbush et al. (1988) evaluated a large

amount of objective speech-quality measures for a wide

range of degradations and proposed various new objective

quality measures. Typically, these quality measures are

defined for short time frames (�25 ms), e.g., based on linear

prediction coefficients and/or loudness differences in some

time-frequency (TF) representation. More recently, Beerends

et al. (2002) developed the advanced objective speech-

quality measure PESQ, which can be considered as state of
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the art in the field of speech-quality prediction. Several stud-

ies are available where PESQ is adjusted in order to assess

the intelligibility instead of speech quality of several signal

degradations such like beamforming (Beerends et al., 2004),

low-bitrate vocoders (Beerends et al., 2005), and speech-

enhancement systems (Kitawaki and Yamada, 2007;

Yamada et al., 2006). Recent findings also show that other

objective speech-quality measures may be used for speech-

intelligibility prediction (Liu et al., 2008; Taal et al., 2009;

Ma et al., 2009).

Although there appears to be a relation between speech

quality and speech intelligibility (Preminger and Tasell,

1995), it is not that obvious that speech-quality measures can

be used for speech-intelligibility assessment. For example,

Liu et al. (2008) indicated that for SNRs below –10 dB

speech may still be partly intelligible, while a lower bound

for speech quality (a MOS equal to 1 indicating bad quality)

is already reached. Correlation between quality and intelligi-

bility may therefore not be present in these regions. Further-

more, there are still many types of signal degradations for

which the relation between quality and intelligibility is not

well understood, and perhaps not even present. For example,

the quality of noisy speech may be improved by applying a

single-channel noise-reduction algorithm (Hu and Loizou,

2007b), while the intelligibility is typically not improved or

sometimes even decreased (Hu and Loizou, 2007a). More-

over, many objective intelligibility measures still predict

incorrectly a significant intelligibility improvement after

noise reduction (e.g., Ludvigsen et al., 1993; Dubbelboer

and Houtgast, 2008; Goldsworthy and Greenberg, 2004;

Taal et al., 2010). Only recently have new promising intelli-

gibility measures for single-channel noise reduction been

proposed by Ma et al. (2009), which are of great interest for

the analysis of existing algorithms. However, for the devel-

opment of near-future noise-reduction algorithms which aim

for intelligibility improvements, these measures should be

reliable for a wide variety of TF-varying gain functions

applied to noisy speech and not only the ones used in con-

ventional systems. New algorithms may involve different

strategies for which it is unknown if the measures from Ma

et al. (2009) are reliable.

In this work an evaluation is presented of objective

measures for the intelligibility prediction of noisy speech

processed with a technique called ideal time frequency seg-

regation (ITFS) (Brungart et al., 2006). ITFS is an approach

from the field of computational auditory scene analysis, sim-

ulating the remarkable properties of the auditory system to

segregate a target speaker from a noisy environment. This

technique is particularly of interest, since it delivers a wide

variety of applied TF-weightings which can have a much

stronger effect on speech intelligibility compared to single-

channel noise reduction. An important reason for this differ-

ence is that ITFS assumes knowledge of the clean speech

signal. Although it can therefore not be used as a practical

noise-reduction algorithm (i.e., the clean speech is unknown

in practice), large intelligibility improvements can be

achieved with ITFS (Kjems et al., 2009). Moreover, the

evaluation presented in this work also contains ITFS-settings

which decrease the speech intelligibility of noisy speech to a

larger extent than conventional noise reduction systems. The

variety of signals resulting from ITFS is also demonstrated

by the fact that ITFS can be applied to essentially noise-only

signals, which gives fully intelligible speech (Kjems et al.,
2009) somewhat similar to multichannel vocoded speech

(Shannon et al., 1995). Objective measures which can cor-

rectly predict all these different aspects of ITFS are therefore

expected to be robust for a wide variety of applied TF-

weightings to noisy speech. Such measures may provide

hints on how, and how not to process noisy speech in future

algorithms which aim for intelligibility improvements. In

addition, intelligibility prediction of the vocoded speech sig-

nals in ITFS is of interest in the field of cochlear implants.

Namely, presenting vocoded speech to normal-hearing lis-

teners has been a valuable method of simulating listening

tests for cochlear implant users (Loizou, 1998). Hence, such

reliable measures could be used, for example, in the develop-

ment process of new speech-coding strategies for cochlear

implants.

In total 17 objective measures are evaluated for the intel-

ligibility prediction of ITFS-processed noisy speech. This

study comprises three state-of-the-art measures for single-

channel noise reduced speech as proposed by Ma et al.
(2009), the Dau auditory model (DAU) (Christiansen et al.,
2010), and the normalized subband envelope correlation

(NSEC) (Boldt and Ellis, 2009) which both show high correla-

tion with ITFS-processed speech, the advanced speech-quality

measure (PESQ), and several conventional frame-based

speech-quality measures, e.g., segmental SNR. We address

some differences between quality and intelligibility prediction

for ITFS-processed speech and propose a general technique

which improves the performance of the frame-based quality

measures when used for intelligibility assessment. From the

evaluation several new promising measures for intelligibility

prediction of ITFS-processed speech are revealed. To demon-

strate the robustness of these measures and the generality of

ITFS-processed speech, we show that they also show good

prediction results for a listening test where several single-

channel noise reduction algorithms are evaluated.

II. INTELLIGIBILITY DATA

The intelligibility data is obtained from a study by

Kjems et al. (2009), where speech is degraded with various

noise types at various SNRs followed by ITFS-processing as

explained in Brungart et al. (2006). ITFS is similar to con-

ventional noise reduction in the sense that a TF-varying gain

function is applied to noisy speech. However, instead of a

continuous gain function, a binary TF-weighting is applied

to the noisy speech called the ideal binary mask (IBM)

(Wang, 2005). Since details of ITFS systems differ, e.g., in

thresholds used to determine the binary TF-weighting, TF-

decompositions, gain values used, etc., we describe the spe-

cific system (Kjems et al., 2009) used to generate the speech

data underlying our study.

A. Signal processing

The IBM has a value equal to one, when the instantane-

ous SNR within a certain TF unit exceeds a user-defined
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local criterion (LC) and is zero otherwise. A mathematical

description for the IBM is given as follows:

IBM t; fð Þ ¼ 1 if T t; fð Þ �M t; fð Þ > LC
0 otherwise;

;

�
(1)

where T(t, f) and M(t, f) denote the signal power in dBs, at

time t and frequency f, for the target (clean speech) and the

masker (noise only), respectively. The TF decomposition is

performed at a sample rate of 20 kHz, by means of a gamma-

tone filterbank (e.g., Patterson et al., 1992) consisting of 64,

2048 tap FIR filters followed by a time segmentation of 20

ms windowed frames with an overlap of 10 ms. The gamma-

tone filters are linearly spaced on an ERB scale between 55

and 7500 Hz The value of each TF unit is then defined as the

signal energy within such a time segment. Next, the IBM is

calculated, upsampled to the original sample rate, and multi-

plied with the noisy signal in each band. Finally, the signal

is reconstructed by applying the time-reversed gammatone

filters and adding the auditory bands.

B. Test material

The test signals are taken from the Dantale II corpus

(Wagener et al., 2003), which consists of five-word senten-

ces all spoken by the same Danish female speaker. The

sentences are of the grammatical form name-verb-numeral-

adjective-noun (e.g., Ingrid owns six old jackets), where

each word in the sentence is picked randomly from a list of

10 possible words. Before ITFS-processing, the speech sig-

nals are mixed with four noise types: speech shaped noise

(SSN), cafeteria noise, noise from a bottling factory hall and

car interior noise and mixed at three different SNRs, includ-

ing the 20 and 50% speech reception threshold (SRT) and an

SNR of �60 dB (The x% SRT is the SNR at which the aver-

age listener achieves x% intelligibility). The SNR of �60 dB

is included for the generation of the vocoded speech signals.

Kjems et al. (2009) performed a different listening test to

determine the SRTs by finding the psychometric function for

each noise type with the adaptive procedure described by

Wagener et al. (2003), where the noisy signal energy was

normalized before playback. The SRTs were then found by

sampling the psychometric function where the results are

shown in Table I.

Eight different values for LC are chosen, including an

unprocessed condition where only the noisy speech is pre-

sented, i.e., LC¼ –1. LC is chosen such that the percentage

of ones in the IBM varies from approximately 1.5–80%. In

addition, an alternative way of calculating the IBM is

included, which is only based on the clean speech. This so

called target binary mask (TBM) is obtained by comparing

the clean speech power with the power of a signal with the

long-term spectrum of the clean speech, within a TF unit.

Therefore, the noise itself is not needed in order to determine

the binary mask. Note, that the TBM equals the IBM for the

case that SSN is used, therefore the TBM is not included for

the SSN case. In total, this results in (4 * IBMþ 3

*TBM)� (3 * SNR)� (8 * LC)¼ 168 conditions to be tested

in the listening experiment.

C. Listening experiment

For the listening experiment, 15 normal-hearing native

Danish speaking subjects participated. The correctly recog-

nized words were recorded by an operator without providing

any form of feedback. The average score for all users in each

condition was consequently obtained by the average percent-

age of correct words.

As an example, the results for all SSN conditions are

plotted in Fig. 1. Here, the percentage of correct words is

plotted as a function of the mask density, i.e., the total per-

centage of ones in the IBM excluding noise-only regions

(see Kjems et al., 2009, for how the noise-only regions are

defined). Note, that the rightmost point refers to a binary

mask with only ones, i.e., LC¼ –1, which equals the condi-

tion where the noisy speech is unprocessed. It can be clearly

observed that the speech can be made fully intelligible when

the mask density is � 20%, independent of the SNR. This is

even valid for the –60 dB case, which will be a challenging

condition for the objective measures, since all temporal fine

structure is lost. When the mask density is lowered the intel-

ligibility actually decreases, which can even drop below the

intelligibility of the unprocessed noisy speech. This is the

case for the 50% SRT signals.

III. OBJECTIVE MEASURES

An overview of the objective measures with their

corresponding abbreviations and references can be found in

TABLE I. The different SNRs in dB used for each noise type (taken from

Kjems et al., 2009).

SSN bottles cafeteria car

20% SRT �9.8 �18.4 �13.8 �23.0

50% SRT �7.3 �12.2 �8.8 �20.3

FIG. 1. Intelligibility of ITFS-processed speech, degraded with speech

shaped noise (replotted from Kjems et al., 2009). The percentage of correct

words is plotted as a function of the mask density, i.e., the total percentage

of ones in the IBM. The mask density of 100% refers to a binary mask with

only ones and equals the noisy unprocessed speech.
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Table II. DAU, NSEC, CSII, and CSTI are intelligibility

measures, PESQ an advanced quality measure and the meas-

ures LLR, IS, CEP, SSNR, MSD, LSD, FWS1, FWS2, WSS,

and PAR are speech-quality measures based on short-time

(� 20–40 ms) frames. MCC and LCC are newly proposed

measures based on spectral correlation in short-time frames.

A. Preliminaries

For each of the objective measures evaluated in this

study, a general descriptive notation was adopted. The out-

come of an objective measure is denoted by d(x, y), where x
is the clean speech and y the processed speech. Let m, k, and

n denote the time-frame, frequency-bin, and time-sample

index, respectively. The nth sample of the mth Hann-

windowed frame of x is then denoted by xm(n) and its kth

DFT bin by Xm(k). Similarly, ym(n) and Ym(k) represent the

time frame and the DFT bin of the processed speech, respec-

tively. Furthermore, let M, N, and K denote the total number

of frames, the frame length and the total number of DFT

bins, respectively. For other frequency decompositions (e.g.,

critical bands), the band index will be denoted by j where J
equals the total number bands. For all objective measures, a

sample rate of 10 kHz is used with N¼ 256 and K¼ 512,

unless noted otherwise.

B. Intelligibility measures

1. Dau auditory model

The advanced auditory model developed by Dau et al.
(1996) (DAU) has been used as an intelligibility predictor by

Christiansen et al. (2010) and shows high correlation with

ITFS-processed speech. First, the spectro-temporal internal

representations of x and y are determined as described in

Dau et al. (1996), followed by a segmentation in short-time

frames within each auditory channel. Subsequently, each

frame is compared by means of a correlation coefficient. Let

Ux,m(n, j) and Uy,m(n, j) denote the internal representations

of the complete signals x and y, respectively, for the mth

frame. The measure is then simply defined as

dDAU x; yð Þ ¼ 1

M

X
m

P
n;j

Ux;m n; jð Þ � lUx;m

� �
Uy;m n; jð Þ � lUy;m

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n;j

Ux;m n; jð Þ � lUx;m

� �2P
n;j

Uy;m n; jð Þ � lUy;m

� �2
s ; (2)

where mUx,m and mUy,m denote the average value of Ux,m and

Uy,m, respectively.

2. Coherence speech-intelligibility index

The coherence speech-intelligibility index (CSII) (Kates

and Arehart, 2005) is based on the magnitude squared coher-

ence function which is defined as the magnitude squared of

the normalized cross-spectral density between x and y, that is,

c kð Þj j2¼ E X kð ÞY kð Þ½ �j j2

E X kð Þj j2
h i

E Y kð Þj j2
h i ; (3)

where the asterisk denotes complex conjugation and E
[� � �] denotes the expectation operator. Kates and Arehart

(2005) use a periodogram-based estimator for the spectral

densities in Eq. (3) [e.g., 1=Mð Þ
P

mXm kð ÞY�m kð Þ estimates

the cross-spectral density between X (k) and Y (k)]. Equa-

tion (3) can be used to express the SNR within an audi-

tory filter as follows (Kates and Arehart, 2005):

SNR jð Þ ¼

P
k

Wj kð Þ c kð Þj j2E Y kð Þj j2
h i

P
k

Wj kð Þ 1� c kð Þj j2
� �

E Y kð Þj j2
h i ; (4)

where Wj denotes the frequency weighting of an auditory

band by means of a ro-ex filter (Kates and Arehart, 2005).

The eventual CSII is then calculated by using the traditional

SII (ANSI, 1997) with the SNR replaced by Eq. (4). We use

the implementation as proposed by Ma et al. (2009), which

shows high correlation with the intelligibility of single-

channel noise-reduced speech [referred to as CSIImid, W4,
p¼ 1 by Ma et al. (2009)].

TABLE II. The evaluated objective measures with their corresponding

abbreviations and full names.

Objective measure name Abbr.

Dau auditory model (Christiansen et al., 2010) DAU

Normalized subband envelope correlation (Boldt and Ellis, 2009) NSEC

Coherence SII (Kates and Arehart, 2005) CSII

Normalized covariance based STI (Goldsworthy and Greenberg,

2004)

CSTI

Perceptual evaluation of speech quality (Beerends et al., 2002) PESQ

Log likelihood ratio (Gray Jr and Markel, 1976) LLR

Itakura saito distance (Itakura and Saito, 1970) IS

Cepstral distance (Gray Jr and Markel, 1976) CEP

Segmental SNR (Deller Jr et al., 1993) SSNR

Magnitude spectral distance MSD

Log spectral distance LSD

Frequency weighted SSNR (Tribolet et al., 1978) FWS1

Normalized frequency weighted SSNR (Hu and Loizou, 2008) FWS2

Weighted spectral slope metric (Klatt, 1982) WSS

Van de Par auditory model (van de Par et al., 2005) PAR

Magnitude spectral correlation coefficient MCC

Log spectral correlation coefficient LCC
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3. Normalized covariance based speech transmission
index

The normalized covariance based speech transmission

index (CSTI) (Koch, 1992; Goldsworthy and Greenberg,

2004) shows good results for several types of nonlinear sig-

nal degradations, e.g., clipping and spectral subtraction. Let

Wx and Wy denote the magnitude envelopes, within an octave

band, of the clean and processed speech, respectively. The

CSTI is then defined as the correlation coefficient between

the band magnitude envelopes within an octave band of the

processed and clean speech, that is,

rj¼

P
m

Wx m; jð Þ�lWx

� �
Wy m; jð Þ�lWy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m

Wx m; jð Þ�lWx

� �2P
m

Wy m; jð Þ�lWy

� �2
r ; (5)

This correlation coefficient is then translated to an apparent

SNR (Goldsworthy and Greenberg, 2004),

aSNR jð Þ ¼
r2

j

1� r2
j

; (6)

which is then clipped between �15 and þ15 dB and normal-

ized between 0 and 1. Let aSNR jð Þ denote the clipped and

normalized apparent SNR, the overall CSTI is then obtained

by a weighted average

dCSTI x; yð Þ ¼
X

j

aSNR jð Þw jð Þ; (7)

where we use w as proposed by Ma et al. (2009) to improve its

performance with respect to single-channel noise reduced

speech [referred to as NCM, W
1ð Þ

i , p¼ 1.5 by Ma et al. (2009)].

4. Normalized subband envelope correlation

Similarly as DAU, the normalized subband envelope

correlation (NSEC) (Boldt and Ellis, 2009) also shows good

correlation with ITFS-processed speech (Boldt and Ellis,

2009). First, a 16 channel gammatone filterbank (80 to

8000 Hz, equally spaced on the ERB scale) is applied on the

clean and processed speech, after which the normalized,

compressed and highpass filtered intensity envelopes K(m,j)
are extracted. The eventual distance between the clean and

processed speech is then defined by the normalized correla-

tion over all time and frequency points, that is,

dnsec x; yð Þ ¼

P
m;j

Kx m; jð ÞKy m; jð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m;j

Kx m; jð Þð Þ2
P
m;j

Ky m; jð Þ
� �2

r ; (8)

where Kx and Ky represent intensity envelopes of the clean

and processed speech, respectively.

C. Speech quality measures

1. PESQ

Perceptual evaluation of speech quality (PESQ) (Beer-

ends et al., 2002) can be considered as a state of the art

speech-quality predictor. Because PESQ is rather complex,

we will only briefly describe its main aspects. First, the clean

and processed speech are time aligned in order to compen-

sate for any delay differences, after which both signals are

processed by a psycho-acoustical model to obtain their inter-

nal representations. After global and local normalization

these representations are compared resulting in so-called

time-frequency dependent disturbance densities. By combin-

ing these values a PESQ-score is obtained. In this research,

the wide band implementation of PESQ from (Loizou, 2007)

is used.

2. Frame-based measures

The measures explained in this section are only defined

for short-time frames, i.e., d(xm,ym). For notational conven-

ience, the frame index m is omitted for these measures and

the notation d̂ x; yð Þ is used instead of d (x, y). To obtain for

each objective measure one total distance measure, the indi-

vidual frame distances should be combined somehow. This

is done by means of a simple average. However, to eliminate

the influence of any outliers, first all individual frame distan-

ces are sorted, where the average is only taken over the

5–95% quantile range (Hansen and Pellom, 1998). This

gives

d x; yð Þ ¼ 1

Mj j
X

m2M
d̂ xm; ymð Þ; (9)

where M denotes the set of frames in the 5–95% quantile

range and jMj its cardinality.

Several basic and well-known speech-quality measures

are included like the segmental SNR (SSNR) (e.g., Loizou,

2007; Deller Jr et al., 1993), where the SNR is determined

within short-time frames and combined. The log-likelihood

ratio (LLR) (Gray, Jr. and Markel, 1976), ceptral distance

(CEP) (Gray, Jr. and Markel, 1976) and the Itakura-Saito

distance (IS) (Itakura and Saito, 1970) are also common

speech-quality measures, which assume that speech is an

auto-regressive process for short-time segments which can

be modeled with linear prediction methods. In contrast to

LLR and CEP, IS is also a function of the LPC gains, which

implies that a linear scaling applied on the speech will influ-

ence the outcome of the IS, which is not the case for the

LLR. CEP is a function of the cepstral coefficients which

can be estimated directly from the LPC coefficients (Quack-

enbush et al., 1988). For more mathematical details for these

three measures see, e.g., Quackenbush et al. (1988), Hansen

and Pellom (1998), and Loizou (2007).

a. Critical-band based measures. Several measures

evaluated in this research use a perceptually motivated fre-

quency analysis by means of a DFT-based critical-band

decomposition. This is implemented by applying an ‘2-norm

on the critical-band filtered DFT spectrum, that is,

Cxm
jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK=2

k¼0

Hj kð ÞXm kð Þ
�� ��2

vuut ; (10)
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where Cxm
jð Þ denotes the level within the jth critical band of

xm and H represents an approximation of the magnitude

spectrum of a fourth order gammatone filter (e.g., Patterson

et al., 1992) as described in van de Par et al. (2005). The sig-

nal is decomposed into 32 different filter channels equally

spaced on an ERB scale ranging from 150 to 4250 Hz to

include, approximately, a relevant frequency range for

speech intelligibility (French and Steinberg, 1947).

One of the simplest distance measures applied on criti-

cal band spectra is the magnitude spectral distance (MSD),

where an ‘2-norm is applied on the difference between the

clean and processed magnitude spectra, that is,

d̂MSD x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ�1

j¼0

Cy jð Þ � Cx jð Þ
�� ��2

vuut : (11)

The same distance measure is also applied on the log spectra

[i.e., 20log10 (C(j))] denoted by log spectral distance (LSD),

which is more in line with how level differences are per-

ceived by the auditory system.

A logical extension of the SSNR is to determine an SNR

within a critical band. This approach is proposed in (Tribolet

et al., 1978) and is known as the frequency weighted SNR

(FWS) and is given by

d̂FWS x; yð Þ ¼

PJ�1

j¼0

w jð Þ10 log10
Cx jð Þ2

Cy jð Þ�Cx jð Þð Þ2
	 


PJ�1

j¼0

w jð Þ
; (12)

where w denotes the AI-index weights (Kryter, 1962) as pro-

posed by Quackenbush et al. (1988). An adjusted version is

also included as proposed by Ma et al. (2009), which has

better performance with single-channel noise reduced speech

[referred to as fwSNRseg, p¼ 1 by Ma et al. (2009)]. Here,

before applying the critical band filters in Eq. (10), the DFT

spectra of the clean and processed speech frames are first

normalized to unit length in the ‘1-sense. Furthermore,

weighting functions based on the clean speech signal are

used. We denote the approach with the AI weights by FWS1

and the latter version with FWS2.

Klatt et al. defined a distance measure known as the

weighted spectral slope metric (WSS) (Klatt, 1982), which is

based on the spectral slopes in each band. First, the slope for

each log-spectral critical band is calculated as follows:

s jð Þ ¼ 20 log10 C jþ 1ð Þ � 20 log10 C jð Þ: (13)

Then, a weighting function per band is used which is based

on the level difference between the current band and the

band containing the closest peak, and on the level difference

between the current band and the band with the maximum

peak in the spectrum, that is,

w jð Þ¼ cg

cgþCg�20 log10C jð Þ
� � cl

clþCl jð Þ�20 log10C jð Þð Þ;

(14)

where Cg denotes the global maximum log-spectral magnitude

of all critical bands and Cl the local log-spectral magnitude of

the peak which is nearest to band j. The values cg and cl are

constants which were set to 20 and 1, respectively (Klatt,

1982). The final outcome of the WSS is then defined as

d̂WSS x; yð Þ ¼
XJ�1

j¼0

w jð Þ sx jð Þ � sy jð Þ
� �2

: (15)

van de Par et al. (2005) proposed an auditory model based

on spectral integration (PAR) and combines the noise-to-sig-

nal ratio within the critical bands to determine the eventual

distortion outcome. The measure is defined as

d̂PAR x; yð Þ ¼ Nc2

XJ�1

j¼0

Ce�hom
jð Þ2

Cx�hom
jð Þ2þc1

; (16)

where e¼ y – x, hom denotes the outer-middle ear filter, and

the constants c1 and c2 are needed for calibration. Here, the

constant c1 can be adjusted to adapt the model sensitivity

and c2 refers to the standard deviation of internal noise re-

sponsible for an absolute hearing threshold in the absence of

an input signal (masker). The model is calibrated according

to van de Par et al. (2005).

D. Additional proposed measures MCC and LCC
based on spectral correlation

The correlation coefficient is a widely used outcome mea-

sure in the field of objective intelligibility assessment. In fact,

all of the intelligibility measures explained in Sec. III B are

based on this correlation measure. While CSTI and CSII inves-

tigate the temporal correlation within one critical band, DAU

and NSEC consider the correlation in the joint spectro-

temporal domain. However, no measure based only on spectral

correlation has been evaluated. Note that FWS2 is perhaps the

closest to such a spectral-correlation based measure and shows

indeed modest correlation with speech intelligibility (e.g., Taal

et al., 2009; Ma et al., 2009). However, FWS2 only normalizes

the speech spectra energy before evaluation and does not com-

pensate for its mean value, which is the case for the correlation

coefficient. Motivated by this, a measure based on the spectral

magnitude correlation coefficient (MCC) is included,

d̂MCC x; yð Þ ¼

PJ�1

j¼0

Cx jð Þ � lCx

� �
Cy jð Þ � lCy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ�1

j¼0

Cx jð Þ � lCx

� �2 PJ�1

j¼0

Cy jð Þ � lCy

� �2

s ;

(17)

where lCx
and lCy denote the sample mean of the clean and

processed critical band values. The same TF-decomposition

is used as with the critical-band based measures. Similarly as

with LSD the same procedure is also applied on the log

critical-band spectra (LCC).

IV. A CRITICAL-BAND BASED NORMALIZATION
PROCEDURE

For all the frame-based measures (SSNR, LLR, IS,

CEP, MSD, LSD, FWS1, FWS2, WSS, PAR, MCC, LCC),
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several issues can arise when using them directly for intelli-

gibility assessment. This is caused on one hand by certain

differences between speech quality and speech intelligibility

prediction, but also by the nature of some of the objective

measures.

The first issue is that some of these measures are sensi-

tive to global level differences between the clean and proc-

essed speech. This is undesirable, since the intelligibility

will not be affected severely when the playback level is

adjusted in a listening experiment. Initial results showed

indeed that the performance of several measures (e.g.,

SSNR, IS, FWS1, LSD, MSD) was completely dominated

by these large energy difference for certain ITFS-conditions

(e.g., TF-weighted noisy speech at �60 dB SNR), which led

to very poor correlation with speech intelligibility. Hence,

some kind of general normalization procedure is desired.

Note, that the more advanced measures DAU, CSTI, NSEC,

CSII, and PESQ do not have this problem, since there is al-

ready some kind of normalization procedure included.

Secondly, some of these frame-based measures are more

sensitive for the frequency regions where the speech energy

is dominant. This means that the low-energy high frequen-

cies of speech (� 2–3 kHz) contribute less compared to

lower, more powerful, frequencies (� 500 Hz). Although

this could make sense in the field of speech-quality assess-

ment, it turns out this is not appropriate for speech-

intelligibility prediction. Several studies have shown that

these high frequency components are actually of similar im-

portance for the speech intelligibility (e.g., ANSI, 1997;

Steeneken and Houtgast, 1980).

The third issue is the fact that certain high (> 5 kHz)

and low frequencies (< 200 Hz) are of less importance to

speech intelligibility (French and Steinberg, 1947), while

they may be relevant for speech quality. Some measures are

sensitive to these frequency ranges, which may bias the

results after signal degradation.

To overcome these problems we use a typical procedure

from the field of objective intelligibility assessment. This pro-

cedure consists of a normalization of the processed and clean

critical-band envelopes by its rms-value before comparison.

This approach is used for most of the STI-based (Goldswor-

thy and Greenberg, 2004) measures and NSEC (Boldt and

Ellis, 2009). The normalization procedure is applied by pre-

filtering the speech signals before evaluation. In this manner,

normalization can be applied to any arbitrary objective mea-

sure. Let aj denote the normalization factor for each critical

band, which equals the reciprocal of its rms value,

aj ¼
1

KM

XM�1

m¼0

XK�1

k¼0

Xm kð ÞHj kð Þ
�� ��2 !�1=2

; (18)

where H equals the spectrum of one critical band as in

Eq. (10). The normalized kth DFT bin of the mth frame, say

X0m kð Þ, is then obtained by an addition of all scaled critical

bands,

X0m kð Þ ¼
XJ�1

j¼0

ajXm kð ÞHj kð Þ: (19)

The time-domain signal can now be reconstructed from the

weighted short-time DFT bins by means of a simple overlap-

add procedure. The processed speech y is normalized with

the same procedure. The rms within each critical band is

now fixed, which makes each measure insensitive for global

energy differences. Furthermore, each critical band will have

an equal contribution to speech intelligibility. Moreover, the

total response of the sum of all critical bands will only take

into account the frequency range approximately between

150 and 4500 Hz, which is roughly a relevant range for

speech intelligibility.

V. EVALUATION PROCEDURE

For each ITFS condition, 30 five-word sentences are

randomly chosen from the corpus, concatenated and ITFS

processed. Before applying the objective measures, the silent

regions are removed between the five-word sentences. To

compare the results of the objective measures and the intelli-

gibility scores, a mapping is needed in order to account for a

nonlinear relation. A widely used mapping is the logistic

function

f dð Þ ¼ 100

1þ exp ad þ bð Þ ; (20)

while for some measures a better fit was observed with the

following function (Taal et al., 2009),

f dð Þ ¼ 100

1þ ad þ bð Þc ; (21)

where a, b, and c in Eq. (20) and Eq. (21) are free parame-

ters, which are fitted to the intelligibility scores with a non-

linear least squares procedure, and d denotes the objective

outcome. For each objective measure both mappings are

evaluated, where finally the best fit is used. For evaluation

we use the correlation coefficient (q) and a normalized ver-

sion of the rms of the prediction error (r) (RMSE),

r ¼ 1

100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

X
i

si � f dið Þð Þ2
s

; (22)

where s refers to an intelligibility score, S denotes the total

number of processing conditions and i runs over all process-

ing conditions. The factor 100 is included to make sure the

RMSE is in the same range as the correlation coefficient.

The mapping functions may not show a good fit between the

intelligibility scores and the objective data for all objective

measures. Therefore, the Kendall’s tau (Sheskin, 2004) is

also included. This outcome measure is independent of the

applied (monotonic) mapping and solely tests whether there

is a monotonic relation between the intelligibility scores and

the objective scores.

VI. RESULTS AND DISCUSSION

For each objective measure, the RMSE, the Kendall’s

tau and the correlation coefficient is given in Table III,
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where, except for DAU, CSII, CSTI, NSEC, and PESQ, the

signals were first subjected to the proposed critical-band

based normalization procedure. To give a clear overview of

the differences in performance, the correlation coefficients

are ranked in Fig. 2. Also the scatter plots and the fitted map-

ping functions are shown in Fig. 3. We can observe that the

proposed measure MCC gave the best results, followed by

NSEC, DAU, and LCC. The simple MSD correlated better

with the intelligibility scores than various other, more

advanced objective measures (e.g., CSTI). Remarkably, the

more advanced measures CSII and PESQ performed rela-

tively poor.

For the measures CSII, CSTI, and FWS2 the new band-

importance functions were used as proposed by Ma et al.
(2009). However, we also evaluated the performance with their

original implementations (not shown). For CSII and CSTI we

did not observe any large changes in performance, while for

FWS2 the performance slightly dropped with the version pro-

posed by Ma et al. (2009). In general, the conclusions made in

this work hold for both implementations of each model.

A. Detailed evaluation of intelligibility measures

Out of the four objective intelligibility measures (DAU,

CSII, CSTI, NSEC), the best performance was obtained with

DAU and NSEC, which both had similar values for all three

outcome measures. In fact, these two measures show the best

performance out of all objective measures, except for the

proposed measure MCC. CSTI also performed modestly

well, while CSII did not perform well.

1. DAU and NSEC

The good results of DAU and NSEC are in agreement

with the results reported in (Boldt and Ellis, 2009) and

(Taal et al., 2009), where it was already observed that both

measures appear to be good intelligibility predictors of

ITFS-processed speech. Nevertheless, it was observed that

both models have a similar weakness and are both more

reliable for the ITFS conditions where the intelligibility

score is relatively high (90–100%). To get a better insight

in this behavior, an additional scatter plot of NSEC is given

in Fig. 4. Here the IBM density, i.e., the percentage of ones

in the binary mask, is denoted by the shading and size of

the rectangular markers. A larger and brighter marker indi-

cates a higher density IBM, where the large white squares

refer to the mask density of 100%, i.e., the unprocessed

noisy speech. The plot clearly illustrates that for these

unprocessed conditions, the output of NSEC is much lower

compared to the remaining ITFS-processed conditions. This

trend is also observed when the density is lowered to 80%,

which in general still have a lower objective output. As a

consequence, the predicted intelligibility scores for the

noisy speech conditions were underestimated. DAU has

similar problems, however, from the scatter plot (not

shown) it was observed that this problem was only present

for the bottles noise.

2. CSTI

CSTI yielded a relatively high ranking with respect to

all other objective measures. This implies that the promising

results of CSTI for clipping and spectral subtraction (Gold-

sworthy and Greenberg, 2004), are maintained with ITFS-

processed speech. Nevertheless, it is clear that the data

points are less well fitted by the mapping function than, for

example, DAU and NSEC. More specifically, the CSTI turns

out to be less reliable for the high intelligible (90–100%)

ITFS conditions than DAU and NSEC.

3. CSII

CSII performed worse than the majority of the evaluated

objective measures. Figure 5 illustrates that the predicted

scores for all �60 dB SNR conditions are underestimated. In

fact, most prediction results for these conditions are clipped

to 0, i.e., the model predicts the speech to be completely

unintelligible. A similar trend occurs for the 20% SRT con-

ditions, which generally show lower objective values than

the 50% SRT conditions. This is not in line with the intelligi-

bility scores, where specific settings of LC can lead to fully

intelligible speech, even at low SNRs.

TABLE III. RMSE (r), Kendall’s tau (s), and correlation coefficient (q) for

all objective measures

Name r s q

PESQ 0.30 0.30 0.41

SSNR 0.27 0.38 0.58

MSD 0.16 0.70 0.88

LSD 0.32 0.19 0.30

FWS1 0.25 0.57 0.67

FWS2 0.24 0.54 0.69

WSS 0.26 0.43 0.60

PAR 0.28 0.34 0.52

MCC 0.12 0.77 0.93

LCC 0.15 0.73 0.88

LLR 0.31 0.24 0.35

IS 0.31 �0.08 0.33

CEP 0.32 0.12 0.19

DAU 0.15 0.73 0.89

CSII 0.29 0.37 0.45

CSTI 0.20 0.63 0.80

NSEC 0.15 0.74 0.89

FIG. 2. Performance with respect to correlation coefficient for all objective

measures (higher is better). For all measures except PSQ, CSII, CSTI, DAU,

and NSEC, the speech signals are first subjected to the normalization proce-

dure as explained in Sec. IV.
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A possible explanation can be given, by rewriting Eq. (3)

with an independent phase and magnitude term. Let the polar

representations of X and Y with magnitude a and phase h be

denoted by aXejhX and aYejhY , respectively. The frequency

index k is omitted for notational convenience. This gives

cj j2¼
E aXejhX aYejhY
� ��� ��2

E aXejhXj j2
h i

E aYejhYj j2
h i ; (23)

A reasonable assumption for speech is that the phase is inde-

pendently distributed from its magnitude (Erkelens et al.,
2007). Equation (23) can then be rewritten as

cj j2¼ E aXaY½ �2

E a2
X½ �E a2

Y½ �
E ej hX�hYð Þ
h i��� ���2: (24)

The right-hand term now indicates the sensitivity for the

phase difference, independently of the magnitudes.

For the situation where the clean speech magnitudes are

preserved, i.e., aX¼ aY, but a different uniformly distributed

phase is used, the right hand term in Eq. (24) will be equal to

0. As a consequence, the CSII will report that the clean

speech is not intelligible. Since the TF weighting in the ITFS

procedure is real valued, the noisy phase will be preserved.

Hence, the right term will be very close to zero in Eq. (24)

for the case that essentially pure noise (�60 dB) is used.

This is not in line with the observations described by Paliwal

FIG. 3. Scatter plots for all objective measures together with the fitted mapping function.

FIG. 4. Scatter plot for NSEC where the density of the IBM is highlighted

by the shading and size of the markers. FIG. 5. Scatter plot of CSII with highlighted SNRs.
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and Alsteris (2003), where it is reported that, by using a dif-

ferent uniformly distributed phase, the intelligibility is

hardly affected.

B. Detailed evaluation of speech quality measures

1. PESQ

The low performance of PESQ was somewhat remark-

able. Apparently, its high correlation with speech quality

does not guarantee a good correlation with the intelligibility

of the ITFS-processed speech signals. This result is different

from the observations reported by Ma et al. (2009), where

PESQ performed modestly well in terms of predicting intel-

ligibility of single-channel enhanced noisy speech. A possi-

ble explanation for this difference is the fact that we used

relatively low SNRs, compared to the higher SNRs from Ma

et al. (2009), which were set equal to 0 and 5 dB. When low-

ering the SNR, PESQ will converge to a low value, predict-

ing very poor speech quality; further lowering the SNR will

have little effect on speech quality. Nevertheless, in this

SNR range a lower bound for speech intelligibility is not

necessarily reached yet, as was illustrated in (Liu et al.,
2008). This explanation is also motivated by the low PESQ

values, which can be observed in its scatter plot in Fig. 3.

Given that PESQ is a reliable predictor of speech quality, it

is therefore likely that the intelligibility of ITFS-processed

speech does not correlate well with its speech quality.

2. Frame-based measures

Out of all frame-based measures the good performance

of MSD was remarkable, since it is probably the simplest

measure used in this research. The models FWS1 and FWS2

show modest correlation with intelligibility, which was also

reported by Ma et al. (2009). Poorer results were obtained

with WSS and SSNR. The remaining measures in ranking

show poor correlation with the intelligibility of ITFS-

processed signals.

MSD has approximately the same results as the complex

intelligibility models DAU and NSEC. Moreover, MSD

shows even better performance than the objective intelligi-

bility measure CSTI. It is hypothesized that the proposed

critical-band based normalization plays an important role for

these good results (see Sec. VI C). Rather poor results were

obtained with LSD. The main reason for this is that the mag-

nitudes close to zero tend to approach minus infinity due to

the log-transform. This situation occurs frequently when the

IBM is sparse. This yields a large output value when evaluat-

ing the distance between processed and clean speech. The

quantile-based procedure which averages all the individual

frame distances [see Eq. (9)] was not sufficient to take care

of these outliers.

Despite their modest correlation, the scatter plots of

FWS1 and FWS2 in Fig. 3 reveal that these measures are

mainly reliable for high intelligibility scores. In addition, an

oversensitivity is observed for the conditions where an IBM

is used with a high percentage of ones as with NSEC. This is

clearly illustrated in Fig. 6, where FWS1 tends to output a

lower objective score for most of the noisy unprocessed

speech conditions. Figure 6 also shows an additional prob-

lem, which was present for most of the SNR-based measures.

Analyzing the plot reveals that for the lower mask densities

(e.g., 1.2 and 7.6%), the output of FWS1 tends to converge

to 0 dB. This behavior is even more present in the scatter

plot of the SSNR in Fig. 3, where a cluster of points around

0 dB is observed. Indeed, it is easy to see that Eq. (12) is

lower bounded by 0 dB for the case where speech informa-

tion is removed, i.e., Cy(j)<Cx(j). By removing speech in-

formation, the speech will eventually become unintelligible.

This is not in line with the predictions of the SNR-based

measures, which make them less suitable for these types of

degradations. Note, that this unwanted behavior is less pres-

ent with the FWS2. This is due to its normalization proce-

dure, where the DFT spectra of the clean and processed

speech frames were first normalized to unit-length in the

‘1-sense (Hu and Loizou, 2008). In principle, the PAR-

auditory model can be interpreted as the inverse of the SNR

within a critical band. However, the SNRs are not converted

to a log scale, which explains the large range of scores

shown in the scatter plot in Fig. 3 (Notice the log scale on

the x-axis). PAR shows similar artifacts as with the SSNR,

and FWS measures for the sparse IBM conditions. For PAR,

these conditions tend to cluster around dpar �15.

The last frame-based speech-quality measures according

the ranking are LLR, CEP, and IS, which all appear to share

a similar problem as with the SNR-based models. Where the

SNR-based measures converged to a certain value for sparse

IBMs, these measures tend to output a large value, when

much speech information is removed. Similarly as with

LSD, this is caused by the fact that these measures are

defined in the log domain.

3. Additional proposed measures MCC and LCC
based on spectral correlation

From the ranking in Fig. 2, we see that the relatively

simple measure MCC has the best performance out of all

objective measures. Despite its simplicity, MCC outperforms

both the complex DAU model and NSEC, which makes it a

FIG. 6. Scatter plot for FWS1, where the percentage of ones of the IBM is

denoted by the color and size of the markers.
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new potential measure for objective intelligibility assess-

ment. As already mentioned, DAU and NSEC are mostly

reliable for the ITFS conditions where the intelligibility

score is relatively high. As shown in Fig. 7, this behavior is

less present with the MCC, where the mapping shows a bet-

ter fit with the data over the entire intelligibility range.

Comparable results with DAU and NSEC are obtained

with LCC, which is also mainly reliable for the high intelli-

gibility scores. Using the log spectra instead of the magni-

tude spectra, which is done in the MCC, the correlation with

the intelligibility decreases for the evaluated ITFS condi-

tions. Note, that DAU and NSEC also use some kind of com-

pressive nonlinearity. In DAU this is included by means of

the adaptation loops, which behave as a log transform for

stationary input signals (Dau et al., 1996). NSEC compresses

the band intensity envelopes by raising them to the power

0.15 (Boldt and Ellis, 2009). Therefore re-investigating these

band-compression stages for intelligibility assessment may

be worthwhile.

C. Influence of critical-band based normalization
procedure

To determine the influence of the critical-band based

normalization procedure, a comparison is made with a nor-

malization procedure based on the rms, that is x’¼ x/rms(x)

and y’¼ y/rms(y). The rms-procedure is chosen since it is a

straightforward and basic approach often used as an initial

stage in more advanced objective measures (e.g., PESQ).

Results for the three outcome measures for this experiment

can be found in Table IV and in Fig. 8(a). For comparison

reasons, PESQ and the four intelligibility measures are also

included, denoted by the white bars (Note that these results

are the same as in Fig. 2, since they were not subjected to

the proposed normalization). The difference in performance

is shown in Fig. 8(b), where the measures on the right indi-

cate a stronger improvement due to the proposed critical-

band based normalization procedure.

Observing the alternative ranking, none of the outcome

measures of the frame-based measures have as good per-

formance as the intelligibility measures CSTI, DAU, and

NSEC. The only measure which correlates modestly with

the intelligibility scores is MSD. Furthermore, as seen in

Fig. 8(b), most of the frame-based measures benefit from the

proposed critical-band based normalization procedure,

except LSD, CEP, IS and LLR. However, also with the rms-

based normalization procedure these measures turn out to be

poor intelligibility predictors.

For the MCC and LCC, a clear problem was observed

when the proposed critical band based normalization proce-

dure was not included. This is caused by the already present

FIG. 7. Scatter plot for MCC, where the density of the IBM is denoted by

the color and size of the markers.

TABLE IV. RMSE, Kendall’s tau, and the correlation coefficient for all

frame-based objective measures when a normalization procedure based on

the rms is applied on the speech signals.

Name rrms srms qrms

SSNR 0.30 0.28 0.44

MSD 0.24 0.54 0.70

LSD 0.30 0.24 0.41

FWS1 0.28 0.44 0.53

FWS2 0.26 0.51 0.63

WSS 0.27 0.42 0.58

PAR 0.30 0.25 0.43

MCC 0.27 0.44 0.58

LCC 0.27 0.45 0.59

LLR 0.30 0.32 0.43

IS 0.31 �0.05 0.38

CEP 0.32 0.21 0.29

FIG. 8. (a) Ranking for all frame-based measures when normalization based

on rms is used instead of the critical-band based normalization. The meas-

ures not subjected to these normalization procedures are denoted by the

white colored bars. (b) The difference in performance between both normal-

ization procedures.
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correlation between the average clean and processed long-

term spectra. Car noise, SSN, and cafeteria noise have a

strong low-frequency content, similar to clean speech, which

yields a positive correlation between their average spectra.

However, the bottles noise has a strong high-frequency spec-

tra, which shows a negative correlation with the average

clean speech spectrum. This is clearly illustrated in the left

plot of Fig. 9, where the noise type is denoted by the marker

type. For the conditions where the speech is degraded with

the bottles noise the intelligibility is underestimated, while

for the remaining noise types the opposite behavior is

observed. This problem is not present in the right plot, where

the proposed normalization procedure is applied. After nor-

malization the clean and processed long-term average

critical-band spectra will be flat and therefore any global cor-

relation is removed.

VII. GENERALITY OF RESULTS

From our results, several promising measures are

revealed for ITFS-processed speech like MCC, NSEC,

DAU, and LCC. An interesting conclusion from this evalua-

tion is that the good performing measures are all employing

a correlation coefficient in some TF-region. For example,

MCC and LCC exploit spectral correlation, while CSTI

looks at the correlation between the temporal envelopes

within a frequency band. Moreover, DAU and NSEC are

based on the correlation in the joint spectro-temporal do-

main. One important property of the correlation coefficient

is its insensitivity to the mean value and the energy of the

input signals. This probably also explains the good results

obtained with the proposed normalization procedure, which

eliminates the effect of the signal energy per critical band.

However, a valid question is if this correlation-based

approach will also work with other TF-weighted noisy

speech signals except than with ITFS, e.g., single-channel

noise reduction. If we compare our findings with the results

from the single-channel noise reduction evaluation of Ma

et al. (2009), we can conclude that CSTI and FWS2 show

reasonable results for both types of processing. As an initial

step to indicate the robustness of the promising measures

from our study (MCC, NSEC, DAU, LCC, and MSD) for

TF-weighted noisy speech, an additional listening experi-

ment is conducted where two single-channel noise reduction

methods are evaluated. The prediction results from these

best measures are compared with the three best performing

measures from Ma et al. (2009), that is CSII, CSTI and

FWS2, which can be considered state-of-the-art measures

for intelligibility prediction for single-channel noise reduced

speech. The same evaluation procedure is used as explained

in Sec. V.

A. Evaluation of objective measures for
single-channel noise-reduced speech

The experiment comprises unprocessed noisy speech

and noisy speech processed by two different single-channel

noise-reduction algorithms. That is, (1) the standard MMSE-

STSA algorithm by Ephraim and Malah (1984) (EM) which

was developed under the assumption that speech and noise

DFT coefficients are Gaussian and (2) an improved version

Erkelens et al. (2007) (SG), which assumes the speech and

noise DFT coefficients to be super-Gaussian and Gaussian

distributed, respectively. For both algorithms, the a priori
SNR is estimated with the decision directed approach

(Ephraim and Malah, 1984) with a smoothing factor of

a¼ 0.98. The noise PSD in EM and SG is estimated using

Minimum Statistics (Martin, 2001) and the noise-tracker by

Hendriks et al. (2010), respectively. Maximum attenuation is

limited to 10 dB in both algorithms. In SG, the parameters

describing the assumed super-Gaussian density of the speech

DFT coefficients are c¼ 1 and �¼ 0.6 Erkelens et al.
(2007).

The same listening test set-up is used as in Section II.

The speech signals are degraded with additive speech-

shaped noise (SSN) at a sample rate of 20 kHz. Five differ-

ent SNRs are considered (�8.9 dB, �7.7 dB, �6.5 dB, �5.2

dB and �3.1 dB), which were chosen such that the psycho-

metric function of clean speech degraded by SSN [based on

earlier experiments (Kjems et al., 2009)] was sampled

approximately between 50 and 100% intelligibility.

Fifteen Danish-speaking listeners (normal hearing) were

asked to judge the intelligibility of the noisy signals and the

two enhanced versions. The three processing conditions (i.e.,

UN, EM and SG), the two noise types and the 5 SNR values

make up 3� 2� 5¼ 30 conditions. For each of the 30 condi-

tions, each listener is presented with 10 five-word sentences.

FIG. 9. Difference in performance between rms-based normalization (left

plot) and critical-band based normalization (right plot) for MCC with

respect to noise type.

FIG. 10. Average-user intelligibility scores for unprocessed noisy (UN)

speech, and two noise-reduction schemes (EM, SG) for (a) speech shaped

noise and (b) cafe noise.
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The results from the listening experiment are shown in

Fig. 10. As can be observed, the noise-reduction algorithms

have a very small effect on the speech intelligibility com-

pared to the intelligibility of the noisy unprocessed speech.

A two-way ANOVA did not showed any significant changes

in intelligibility due to each noise-reduction algorithm for

each noise type (see p-values in Table V). This result is in

line with the conclusions from Hu and Loizou (2008) where,

in general, no noise-reduction scheme could improve the

intelligibility of noisy speech.

The prediction results for the objective measures are

shown in Table VI. From the results we can conclude that

the proposed measures MCC, MSD, and LCC also have

good performance with the single-channel noise reduced sig-

nals contained in the listening test next to ITFS-processed

speech. In fact, in terms of the correlation coefficient and the

RMSE the proposed MCC shows similar performance as the

CSII as proposed by Ma et al. (2009), which can be con-

sidered as a state-of-the-art intelligibility predictor of noise-

reduced speech. Although not as good as the proposed

measures from Ma et al. (2009), DAU and NSEC also show

moderate correlation with this dataset. Overall it can be

stated that the good performing measures for the ITFS-data

set also have good performance with the single-channel

noise-reduced set, but not vice-versa.

B. Other types of signal degradations

We have proposed new objective measures, which show

high correlation with the intelligibility of noisy speech sig-

nals processed by a TF-varying weighting, like ITFS and

single-channel noise reduction. It is not guaranteed that our

results are also valid for other degradation types than TF-

weighted noisy speech, e.g., reverberation. For example, Liu

et al. (2008) showed that some measures can be very reliable

for predicting the effect of speech coders on intelligibility,

while the same measures may be unreliable for predicting

the intelligibility of noise-reduced speech. This was also

demonstrated for the CSTI by Goldsworthy and Greenberg

(2004), which shows good performance for clipping and

spectral subtraction but not for reverberated speech. In future

research the promising measures from our research will be

evaluated for other types of distortions.

VIII. CONCLUSIONS

The focus of this study was the evaluation of various

predictive models of intelligibility using ideal-time fre-

quency segregated (ITFS) noisy speech. In total 17 objective

measures were evaluated consisting of four advanced objec-

tive speech-intelligibility measures (DAU, NSEC, CSII,

CSTI), an advanced speech-quality measure (PESQ), and

several more conventional frame-based measures (e.g.,

SSNR). Several of the measures were particularly sensitive

to level differences between processed and unprocessed

speech. To overcome this problem a general normalization

procedure based on equalizing the rms per critical band was

employed. All objective measures were evaluated by means

of predicting the intelligibility of 168 different conditions of

noisy and ITFS-processed noisy speech signals. From these

results the following conclusions can be drawn.

(1) Out of all 17 objective measures the highest correlation

(q¼ 0.93) with speech intelligibility was obtained with

the proposed frame-based measure MCC. This measure

was defined as a simple correlation coefficient between

the critical-band magnitude spectra of the clean and

processed speech.

(2) Good results were obtained with DAU and NSEC (both

with q¼ 0.89). Nevertheless, these measures turned out

to be too sensitive for the noisy unprocessed speech

compared to the TF-weighted speech. As a consequence,

both measures underestimated the intelligibility for noisy

speech compared to TF-weighted noisy speech.

(3) LCC and MSD frame-based measures also showed high

correlations (q¼ 0.88).

(4) The intelligibility measure CSTI gave reasonable results

(q¼ 0.80). Therefore, in addition to showing promising

results with clipping and spectral subtraction reported by

Goldsworthy and Greenberg (2004), CSTI is also a reasona-

ble intelligibility predictor for ITFS-processed noisy speech.

(5) Poor results were obtained with the CSII, which was not

a reliable intelligibility predictor for the ITFS-processed

signals used in this research. This was probably due to

sensitivity to the DFT phase component.

(6) The advanced objective quality-measure PESQ showed

a low correlation with speech intelligibility. Since PESQ

is a reliable predictor of speech quality, it is therefore

likely that the intelligibility of ITFS-processed noisy

speech from this study does not correlate with its speech

quality.

(7) Compared with an rms-based normalization procedure,

the proposed critical-band based normalization improved

the correlation with intelligibility for almost all frame-

based measures. In particular the measures MCC, LCC

and MCD had a large performance improvement due to

the proposed critical-band based normalization.

TABLE V. Two-way ANOVA p-values for the hypothesis that there is no

effect on intelligibility due to noise reduction for both algorithms (EM, SG)

and noise type (SSN, Cafe).

EM SG

SSN 0.2470 0.4177

Cafe 0.0702 0.4286

TABLE VI. RMSE, Kendall’s tau, and the correlation coefficient of the

objective measures for intelligibility prediction of the single-channel noise-

reduced speech signals.

Name r s q

MCC 0.06 0.75 0.93

CSII 0.06 0.83 0.92

MSD 0.07 0.74 0.90

LCC 0.07 0.69 0.90

FWS 0.07 0.67 0.89

CSTI 0.07 0.78 0.87

DAU 0.08 0.59 0.84

NSEC 0.10 0.62 0.75
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(8) The frame-based measures IS, CEP, LSD, LLR, SSNR,

and PAR showed low correlation (q< 0.60) with speech

intelligibility. This conclusion holds for both the pro-

posed critical-band based normalization and the rms-

based normalization procedure.

(9) The good performing measures in this study (MCC,

LCC, DAU, NSEC, and FWS2) also showed high corre-

lation with the intelligibility prediction of single-channel

noise reduced speech.
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