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An Algorithm for Intelligibility Prediction of
Time—Frequency Weighted Noisy Speech

Cees H. Taal, Richard C. Hendriks, Richard Heusdens, and Jesper Jensen

Abstract—In the development process of noise-reduction al-
gorithms, an objective machine-driven intelligibility measure
which shows high correlation with speech intelligibility is of
great interest. Besides reducing time and costs compared to real
listening experiments, an objective intelligibility measure could
also help provide answers on how to improve the intelligibility of
noisy unprocessed speech. In this paper, a short-time objective
intelligibility measure (STOI) is presented, which shows high
correlation with the intelligibility of noisy and time—frequency
weighted noisy speech (e.g., resulting from noise reduction) of
three different listening experiments. In general, STOI showed
better correlation with speech intelligibility compared to five other
reference objective intelligibility models. In contrast to other
conventional intelligibility models which tend to rely on global
statistics across entire sentences, STOI is based on shorter time
segments (386 ms). Experiments indeed show that it is beneficial
to take segment lengths of this order into account. In addition, a
free Matlab implementation is provided.

Index Terms—Noise reduction, objective measure, speech en-
hancement, speech intelligibility prediction.

1. INTRODUCTION

PEECH processing systems often introduce degradations
S and modifications to clean or noisy speech signals, e.g.,
quantization noise in a speech coder or residual noise and speech
distortion in a noise reduction scheme. To determine the percep-
tual consequences of these artifacts, the algorithm at hand can be
evaluated by means of a listening test or an objective machine-
driven quality assessment. Although a listening test can lead to
a judgment as observed by the intended group of users, such
tests are costly and time consuming. Therefore, accurate and
reliable objective evaluation methods are of interest since they
might replace listening tests, at least in some stages of the algo-
rithm development process. Although it is not straightforward
to completely characterize a noisy or processed speech signal,
people tend to divide the evaluation into the attributes speech
quality, (i.e., pleasantness/naturalness of speech) and speech in-
telligibility. In this paper, we focus on speech intelligibility.
One of the first objective intelligibility measures was devel-
oped at AT&T Bell Labs around 1920 and eventually published

Manuscript received August 24, 2010; revised November 30, 2010; accepted
February 04, 2011. Date of publication February 14, 2011; date of current ver-
sion July 22, 2011. This work was supported by the Oticon foundation and
the Dutch Technology Foundation STW. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Malcolm
Slaney.

C. H. Taal, R. C. Hendriks, and R. Heusdens are with the Delft University
of Technology, Signal Information and Processing Lab, 2628 CD Delft, The
Netherlands (e-mail: c.h.taal @tudelft.nl).

J. Jensen is with Oticon A/S, 2765 Smgrum, Denmark.

Digital Object Identifier 10.1109/TASL.2011.2114881

by French and Steinberg [1]. Kryter [2] made the measure better
accessible by proposing a calculation scheme, which is currently
known as the articulation index (AI). The basic approach of Al
is to determine the signal-to-noise ratio (SNR) within several
frequency bands; the SNRs are then limited, normalized and sub-
jected to auditory masking effects and are eventually combined
by computing a perceptually weighted average. This approach
evolved to the speech intelligibility index (SII) and was standard-
ized as S3.5-1997 [3]. Since Al is mainly meant for simple linear
degradations, e.g., additive noise, Steeneken and Houtgast [4]
proposed the speech transmission index (STI), which is also able
to predict the intelligibility of reverberated speech and nonlinear
distortions. For this objective measure, a noise signal with the
long-term average spectrum of speech is amplitude modulated
at several modulation frequencies with a cosine function and
applied to the communication channel. The eventual outcome of
the STI is then based on the effect on the modulation depth within
several frequency bands at the output of the communication
channel. The majority of recently published models are still
based on the fundamentals of Al e.g., [5], [6] and STI (see the
work from Goldsworthy and Greenberg [7] for an overview).

Although the just mentioned objective intelligibility measures
are suitable for several types of degradation (e.g., additive noise,
reverberation, filtering and clipping), it turns out that they are
less appropriate for methods where noisy speech is processed
by some type of time—frequency (TF) varying gain function.
This includes single-channel noise-reduction algorithms (see
the work from Loizou [8] for an overview), but also speech sep-
aration techniques like ideal time frequency segregation (ITFS)
[9], where typically a binary TF-weighting is used. For example,
STI and various STI-based measures predict an intelligibility
improvement when spectral subtraction is applied [7], [10], [11].
This is not in line with the results of listening experiments in lit-
erature, where it is reported that single-channel noise-reduction
algorithms generally are not able to improve the intelligibility
of noisy speech, e.g., [12]. Furthermore, measures like the co-
herence SII (CSII) [6] and a normalized covariance-based
STI procedure (CSTI) [7], both show low correlation with the
intelligibility of ITFS-processed speech [13].

In arecent study, Ma et al. [14] showed that several intelligi-
bility measures could benefit from the use of new (signal-depen-
dent) band-importance functions (BIF). For example, the corre-
lation of CSII and CSTI with the speech intelligibility of single-
channel noise-reduced speech increased significantly by the use
of these new BIFs [14]. It is of interest to see if these methods
would also work for other types of TF-weighted noisy speech,
e.g., ITFS-processed speech. Also two different methods have
been proposed lately, which indicate promising results for ITFS-
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processed speech [15], [16]. These methods have not been eval-
uated yet for intelligibility prediction of single-channel noise
reduced-speech.

Therefore, a reliable objective intelligibility measure which
has high correlation with the speech intelligibility of noisy and
various types of TF-weighted noisy speech is of great interest.
Such a measure could be used for the analysis of algorithms
that process noisy speech. In addition, new algorithms could be
developed, which optimize for such an objective measure. To
analyze the effect of certain signal degradations on the speech
intelligibility in more detail, an objective measure must be of a
simple structure. Nevertheless, some measures are based on a
large amount of parameters which are extensively trained for a
certain dataset. This makes these measures less transparent, and
therefore less appropriate for these evaluative purposes.

In this paper, a simple objective intelligibility measure is pro-
posed which has a strong monotonic relation with the intelligi-
bility scores of various listening tests where noisy speech is pro-
cessed by some type of TF-weighting.! The model has a simple
structure in the sense that it is based on only two free parameters.
Moreover, it shows better performance than five other reference
objective intelligibility measures for these listening tests.

A. Rationale of Proposed Intelligibility Measure

A general approach in the field of objective intelligibility as-
sessment is to make some type of correlation-based compar-
ison between the spectro-temporal internal representations of
the clean and degraded speech signal. For example, CSTI [7]
determines a correlation coefficient between octave-band tem-
poral envelopes and CSII [6] is based on the coherence function,
which is a measure of correlation between complex Fourier-co-
efficients, over time, as a function of frequency. Another ex-
ample of a correlation-based measure is the normalized subband
envelope correlation (NSEC) proposed by Boldt and Ellis [16].
In contrast to SNR-based measures (e.g., [3], [5]), the benefit of
such a correlation-based approach is the fact that the introduced
degradation (i.e., “the noise”) is not needed as a separate signal
in isolation from the clean speech. Hence, in addition to speech
corrupted by background noise, a correlation-based comparison
can also be used for other (nonlinear) types of distortions, e.g.,
noise-reduced speech, where it is not that straightforward how
to separate the clean speech from its introduced distortion.

Several correlation-based measures estimate correlation
values for the complete signal of interest at once (e.g., [6],
[7], [16]). Typically, these signals have a length in the order
of tens of seconds. A problem which occurs with an analysis
length of this order is the fact that a few signal regions with
high amplitudes (either from the clean or the degraded speech)
may dominate the eventual estimated correlation. There are
also measures based on a very short segment size (20-30 ms),
e.g., [15]. However, as a consequence of their poor modulation
frequency resolution, certain low temporal modulations are ex-
cluded which are important for speech intelligibility. According
the results from Drullman et al. [17] temporal modulations
below 2—-3 Hz can be removed without affecting intelligibility.

! An intelligibility model can also predict absolute intelligibility scores (e.g.,
a percentage of correctly understood words), however, for analysis and/or opti-
mization monotonicity with speech intelligibility is already of great interest.
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Therefore, an analysis window with a length around 333-500
ms would be more appropriate. This is also more in line with
the results from van den Brink [18] which suggest that the
temporal integration time of the auditory system has an upper
bound of a few hundreds of milliseconds.

Motivated by this we propose a short-time objective intelli-
gibility (STOI) measure, based on a correlation coefficient be-
tween the temporal envelopes of the clean and degraded speech,
in short-time (384 ms), overlapping segments. Indeed, by exper-
imenting with this segment-length we will show that one actu-
ally benefits using segments of this duration.

B. Further Outline

The remaining part of this paper is organized as follows:
first more details are given about STOI in Section II. Then, in
Section III, three different intelligibility listening experiments
are described for different types of processed noisy speech.
These results are used to evaluate the intelligibility predic-
tion performance of STOI. Next, more details are given in
Section IV about the general evaluation procedure. Finally, the
evaluation results are presented together with a discussion in
Section V after which conclusions are drawn.

II. STOI

The basic structure of STOI is illustrated in Fig. 1. It is a
function of the clean and degraded speech, denoted by z and
y, respectively. The output of STOI is a scalar value which is
expected to have a monotonic relation with the average intelli-
gibility of y (e.g., the percentage of correctly understood words
averaged across a group of users). A sample-rate of 10 kHz is
used, in order to capture a relevant frequency range for speech
intelligibility [1].2

First, both signals are TF-decomposed in order to obtain
a simplified internal representation resembling the transform
properties of the auditory system. This is obtained by seg-
menting both signals into 50% overlapping, Hann-windowed
frames with a length of 256 samples, where each frame is
zero-padded up to 512 samples. Before evaluation, silent
regions which do not contribute to speech intelligibility are
removed. This is done by first finding the frame with max-
imum energy of the clean speech signal. Both signals are then
reconstructed, excluding all the frames where the clean speech
energy is lower than 40 dB with respect to this maximum clean
speech energy frame. Then, a one-third octave band analysis
is performed by grouping DFT-bins. In total 15 one-third
octave bands are used, where the lowest center frequency is set
equal to 150 Hz and the highest one-third octave band has a
center-frequency equal to approximately 4.3 kHz.

Let (k,m) denote the k" DFT-bin of the m!" frame of the
clean speech. The norm of the j** one-third octave band, re-
ferred to as a TF-unit, is then defined as

k2(5)—1

> 1k m) (1)

k=k1(5)

Xj(m) =

2Note, that the sample-rate of 10 kHz is not critical. When the window length
(in ms) and the frequency-range of the critical bands is preserved the method
can be extended to other sample-rates.
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STOI is a function of the clean and degraded speech, which are first decomposed into DFT-based, one-third octave bands. Next, short-time (384 ms)

temporal envelope segments of the clean and degraded speech are compared by means of a correlation coefficient. Before comparison, the short-time degraded
speech temporal envelopes are first normalized and clipped (see text for more details). These short-time intermediate intelligibility measures (d; ,,, ) are then
averaged to one scalar value, which is expected to have a monotonic increasing relation with the speech intelligibility.

where k1 and k5 denote the one-third octave band edges, which
are rounded to the nearest DFT-bin. The TF-representation of
the processed speech is obtained similarly, and is denoted by
Y;(m).

STOI is a function of a TF-dependent intermediate intelligi-
bility measure, which compares the temporal envelopes of the
clean and degraded speech in short-time regions by means of a
correlation coefficient. The following vector notation is used to
denote the short-time temporal envelope of the clean speech:

Xjm = [Xj(m =N +1),X;(m—N+2),...,X;(m)]"
2
where N = 30 which equals an analysis length of 384 ms (see
Section V-C for details on this particular choice). Similarly,
¥j,m denotes the short-time temporal envelope of the degraded
speech. As illustrated in Fig. 1, y; , is first normalized and
clipped before comparison. The rationale behind the normal-
ization procedure is to compensate for global level differences
which should not have a strong effect on the speech intelligibility
(e.g., due to different playback levels of = and ). The clipping
procedure makes sure that the sensitivity of the model towards
one TF-unit which is severely degraded is upper bounded. As a
consequence, further degradation of a speech TF-unit which
is already completely degraded (i.e., “unintelligible”’) does not
lead to a lower intelligibility prediction by the model.
Let x(n) denote the n'" element of x, wheren € {1,..., N}
and || - || represent the ¢5 norm. The normalized and clipped
version of y, say y, is then given by

Yim(n) = min (Mym(m, (a+ 10-6/2°>xj,m<n>) |

1 3.mll
3)
where § = —15 dB refers to the lower signal-to-distortion
(SDR) bound. Indeed, for this case we have that
2
SDR = 10log,, Xj.m (1) s >8 @
(¥jm (1) = Xj,m(n))

The intermediate intelligibility measure is defined as the
sample correlation coefficient between the two vectors
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Fig. 2. Example to illustrate the effect of the normalization and clipping pro-
cedure. A clean (x) and noisy (y) speech vector of 30 time-frames (386 ms) is
shown in (a) together with a corresponding scatter-plot in (b). Similarly, (c) and
(d) show the results for the normalized (y||x||/||y]|) and clipped+normalized
() degraded vector (See text for more details). Notice that the clipping proce-
dure reduces the effect of the noise in noise-only regions.

where (i) refers to the sample average of the corresponding
vector. Finally, the average of the intermediate intelligibility
measure over all bands and frames is calculated:

1
d= 327; djm (6)
where M represents the total number of frames and .J the
number of one-third octave bands.

A. Example of Normalization and Clipping Procedure

To illustrate the effect of the normalization and clipping pro-
cedure an example is given in Fig. 2, where subplot (a) shows a
short-time temporal envelope of a clean speech vector together
with a noise corrupted version (one frequency band is shown).
A corresponding scatter plot is given in Fig. 2(b), where d; ,,, =
0.81 denotes the outcome of the intermediate intelligibility mea-
sure when clipping would be discarded, i.e., ¥ is replaced with
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y in (5) (note, that the applied scaling due to the normalization
does not directly affect the correlation coefficient). The normal-
ized and clipped+normalized vectors of the degraded speech are
shown in Fig. 2(c) together with a scatter-plot in Fig. 2(d). From
Fig. 2(c) it can be observed that the clipping procedure is mainly
effective in the noise-only regions (i.e.,n < 11 andn > 23). As
a consequence, a higher correlation is obtained (d; ., = 0.96)
compared to the situation when clipping would be discarded
(djm = 0.81). This is desired, since it is expected that de-
grading these regions (where speech is absent within a sentence)
will only have a minor impact on speech intelligibility.

III. LISTENING EXPERIMENTS

In order to evaluate the performance of STOI, its output as
described in (6) is compared with the intelligibility scores from
three different intelligibility listening experiments. In each of
these listening tests, noisy speech is processed with different
types of TF-weightings. While the first experiment comprises
a method where noisy speech signals are ITFS-processed [19],
the second listening test evaluates the effect on speech intelli-
gibility due to two conventional single-channel noise-reduction
schemes. The last experiment evaluates the effect of modifying
the applied TF-weighting based on ITFS with artificially intro-
duced errors [20]. Next, more details will be given about these
three listening tests.

A. Ideal Time—Frequency Segregation

The intelligibility data from the first experiment is obtained
from a listening test conducted by Kjems et al. [19], where noisy
speech signals are ITFS-processed. ITFS is a technique which
can improve the intelligibility of noisy speech significantly by
applying a binary modulation pattern in a TF-representation.3
This binary modulation pattern has a value equal to one, when
the SNR within a certain TF-component exceeds a user-defined
local criterion (LC), and is commonly referred to as the ideal
binary mask (IBM). The IBM is given as follows:

1, ifT(t, f)—M(t f) > LC
0, otherwise

IBM(t./f):{ (7
where T'(¢, f) and M (¢, f) denote the signal power in dBs,
at time ¢ and frequency f, for the target (clean speech) and
the masker (noise only), respectively. The TF-decomposition is
based on a 64-channel gammatone filterbank linearly spaced on
an ERB scale between 55 and 7500 Hz. The filterbank is fol-
lowed by a time segmentation of 20-ms windowed frames with
an overlap of 10 ms.

Lowering the LC-parameter in (7) will increase the number of
ones in the IBM, where LC = —oo will result in an IBM with
ones only (i.e., the noisy speech is unprocessed). High values
for LC will result in sparse IBMs. Kjems et al. showed that for
certain settings of the LC-parameter as a function of the global
SNR, noisy speech can be made fully intelligible. This even
holds for the situation that essentially pure noise is modulated

3Note, that here the clean speech is needed separately from the noise source,
therefore, large intelligibility improvements are possible. Although this may not
seem practical in real-life noisy conditions, this type of processing will deliver
a wide variety of processed signals with largely varying intelligibility scores.
This is of interest for evaluating STOI.
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Fig. 3. Ideal time—frequency segregation: average-user intelligibility scores
with standard errors of clean speech degraded with speech shaped noise (SSN)
at three different SNRs (20%SRT, 50%SRT, —60 dB), followed by ITFS
processing (replotted from Kjems et al. [19]). The percentage of correct words
is plotted as a function of the ITFS algorithm’s LC-parameter corrected with
the global SNR (see text for more details). The leftmost point refers to an IBM
with only ones, i.e., LC' = —oo, which equals the noisy unprocessed speech
(UN).

with the IBM [19]. An alternative IBM is also included which
is only based on the clean speech. This so-called target binary
mask (TBM) [19] is obtained by comparing the clean speech
power with the power of a signal with the long-term spectrum of
the clean speech, within a TF-component. Therefore, the noise
itself is not needed in order to determine the TBM. For more
details on the algorithm (e.g., signal reconstruction) the reader
is referred to Kjems et al. [19].

The test signals are taken from the Dantale II corpus [21],
where each excerpt consists of five words, all spoken by the same
Danish female speaker. These sentences are degraded by four
different types of additive noise: speech shaped noise (SSN),
cafeteria noise, noise from a bottling factory hall and car interior
noise at three different SNRs: 20% and 50% speech reception
threshold (SRT)* and an SNR of —60 dB, which represents
essentially pure noise. Eight different LC-values are chosen,
including an unprocessed condition where only the noisy speech
is presented, i.e., LC = —oo (see the work from Kjems ez al. [19]
for more details on the SNR values and LC-parameters).

For the listening experiment, 15 normal-hearing native Danish
speaking subjects participated, where the correctly recognized
words are recorded by an operator without providing any form of
feedback. Each subject listened to two five-word sentences for
each condition. The average score for all users for one condition is
then obtained by the average percentage of correct words. In total,
this gives (4 * IBM 4 3 « TBM) * (3 * SNR) * (8 x LC) = 168
conditions to be tested in the listening experiment. Only three
TBM conditions are included since the TBM equals the IBM
for the case that SSN is used, by definition.

As an example, the results for all SSN conditions processed
with an IBM are plotted in Fig. 3. Here, the percentage of correct
words is plotted as a function of the LC-parameter corrected
with the global SNR. By subtracting the global SNR from the
LC-parameter one can observe from the figure that the noisy

4The 2% SRT is the SNR at which the average listener achieves +% intelligi-
bility.
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speech becomes fully intelligible when the corrected SNR is
close to 0 dB. Note, that the leftmost point refers to an IBM with
only ones, which equals the condition where the noisy speech is
unprocessed (indicated by UN in Fig. 3.

B. Single-Channel Noise Reduction

The second experiment comprises unprocessed noisy speech
and noisy speech processed by two different single-channel
noise-reduction algorithms. That is, 1) the standard MMSE-
STSA algorithm by Ephraim-Malah (EM) [22] which was
developed under the assumption that speech and noise DFT
coefficients are Gaussian, and 2) an improved version by
Erkelens et al. (SG) [23], which assumes the speech and
noise DFT coefficients to be super-Gaussian and Gaussian
distributed, respectively. For both algorithms, the a priori SNR
is estimated with the decision directed approach [22] with a
smoothing factor of o = 0.98. The noise PSD in EM and SG is
estimated using minimum statistics [24] and the noise-tracker
by Hendriks er al. [25], respectively. Maximum attenuation
is limited to 10 dB in both algorithms. In SG, the parameters
describing the assumed super-Gaussian density of the speech
DFT coefficients are v = 1 and v = 0.6 [23].

As with the previous listening experiment from Section III-A
the speech signals are from the Dantale II corpus [21], which
are degraded by additive speech-shaped noise (SSN) at a sample
rate of 20 kHz. Five different SNRs are considered (—8.9 dB,
—7.7dB, —6.5dB, —5.2 dB, and —3.1 dB), which were chosen
such that the psychometric function of clean speech degraded by
SSN (based on earlier experiments [19]) was sampled approxi-
mately between 50% and 100% intelligibility.

Fifteen Danish-speaking listeners (normal hearing) were
asked to judge the intelligibility of the noisy signals and the
two enhanced versions. The three processing conditions (i.e.,
UN, EM, and SG) and five SNR values make up 3*5 = 15
conditions. For each of the 15 conditions, each listener is
presented with ten five-word sentences. The average score for
all users and for one condition was consequently obtained by
the average percentage of correct words.

The results from the listening experiment are shown in Fig. 4.
As can be observed, the noise-reduction algorithms have a very
small effect on the speech intelligibility compared to the intel-
ligibility of the noisy unprocessed speech. A two-way ANOVA
did not showed any significant changes in intelligibility due
to each noise-reduction algorithm for each noise type (See
p-values in Table I). This result is in line with the conclusions
from Hu and Loizou [26] where, in general, no noise-reduction
scheme could improve the intelligibility of noisy speech.

C. ITFS With Artificially Introduced Errors

As with Section III-A, the last listening experiment is also
based on ITFS. Since the clean speech is needed in (7), the high
intelligibility improvements illustrated in Fig. 3 are generally
not obtained in real-life noisy conditions. In practice, one has
to estimate the IBM from the noisy speech, which will typically
lead to errors [27]. In order to find implications for noise re-
duction, Li and Loizou [20] investigated the effect of artificially
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Fig. 4. Single-channel noise reduction: average-user intelligibility scores with
standard errors for unprocessed noisy (UN) speech, and two noise-reduction
schemes (EM, SG) for (a) speech shaped noise and (b) cafe noise. (a) SSN. (b)
Cafe.

TABLE I
Two-WAY ANOVA p-VALUES FOR THE HYPOTHESIS THAT THERE IS
NO EFFECT ON INTELLIGIBILITY DUE TO NOISE REDUCTION FOR BOTH
ALGORITHMS (EM, SG) AND NOISE TYPE (SSN, CAFE)

EM SG
SSN 02470 04177
Cafe 0.0702  0.4286

introduced errors in the IBM for the case that LC = 0 dB. We re-
generated these processed signals as described by Li and Loizou
[20], which are used for the evaluation of STOI.

Three types of errors in the IBM were considered by Li and
Loizou. 1) A general error, which refers to the procedure where
the value of a random selection of TF-units (FFT-based) per
time-frame (20 ms) is changed, i.e., a zero in the IBM becomes a
one and vice-versa. 2) A type-I error, where a certain percentage
of TF-units in the IBM, originally labeled as zero, is changed
into a one. (3) A type-II error, where a random selection of
TF-units, originally labeled as one, are changed into a zero. For
the general errors, five amounts of error in terms of percentage
are used (5%—40%) and three noise types are considered (SSN,
2-talker babble noise and 20-talker babble noise) all mixed at
—5-dB SNR. For the type-I and type-II errors only the 20-talker
babble noise is used (also —5-dB SNR) and eight percentages
are considered (20%-95%). Moreover, the unprocessed noisy
speech for all three noise types is also included. This gives
us a total of 31 conditions: (3 noise types * 5 error values) +
(2 error types)*(8 error values) + 3 * unprocessed.
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Fig. 5. ITFS with artificially introduced errors: average-user intelligibility
scores with standard errors for artificially introduced errors in the IBM
(replotted from the work of Li and Loizou [20]). (a) The effect on speech
intelligibility due to a general error for three different noise types at —5-dB
SNR. (b) The effect on speech intelligibility due to a type-I or type-II error for
20-speaker babble noise at —5-dB SNR (see text for details). UN indicates the
unprocessed noisy speech.

Seven normal-hearing listeners participated in the listening
experiment from Li and Loizou, where all subjects were native
American English speakers. The speech material consisted of
sentences taken from the IEEE database, see, e.g., [8], all pro-
duced by the same male speaker, where 20 sentences were used
per condition.

The results from Li and Loizou are replotted in Fig. 5 [20].
Fig. 5(a) illustrates that a general error in the IBM has a similar
impact on intelligibility for all noise types. That is, the gain in
intelligibility due to the applied IBM drops fast when the per-
centage of incorrectly TF-units is larger then 10%. In Fig. 5(b),
it can be clearly observed that a Type-I error has a stronger ef-
fect on intelligibility compared to a Type-II error.

IV. EVALUATION PROCEDURE

In order to evaluate STOI, 30 sentences are taken from
the relevant corpus for each condition of the three lis-
tening experiments. That is, the Dantale sentences [21]
for listening experiment Sections III-A and III-B, and the
IEEE sentences (see, e.g., [8]) for listening experiment
III-C. These 30 clean and processed sentences are then
concatenated and resampled to 10 kHz. We experimented
with different values of N € [10,20,30,50,100,500] and
B € [-o00,—35,—25,—15 —10] only for the intelligibility
data originating from the ITFS listening experiment from
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Section III-A. Note, that 5 = —oo equals the condition without
clipping and therefore without normalization (without clipping
the correlation coefficient from (5) is independent of the applied
normalization procedure).

Best performance was obtained with N = 30 and
B = —15 dB. These settings were used for evaluating STOI
with respect to the remaining two listening tests.

A. Mapping

We are interested in measuring the monotonic relation be-
tween the outcomes of STOI and the actual intelligibility scores.
First, a mapping is used in order to account for a nonlinear rela-
tion between the STOI outcomes and the intelligibility scores.
The main reason for this mapping procedure is to linearize the
data such that we can use merits like a linear correlation coeffi-
cient. Second, with this procedure the STOI scores are mapped
to an absolute intelligibility prediction which makes it possible
to reveal the distribution of prediction errors amongst all the lis-
tening test conditions. For this a logistic function is used:

£(d) 100

T 1+ exp(ad + b) ®

where a and b are free parameters, which are fitted to the data
with a nonlinear least squares procedure. Note, that a logistic
function is also monotonic and will therefore not influence the
monotonicity between STOI and the intelligibility scores.
While experiments Section III-A and III-B use the Danish
Dantale sentences, listening experiment III-C uses the English
IEEE database. In contrast to the IEEE database, the Dantale
sentences are taken from a closed set of words. As a conse-
quence, the Dantale sentences are easier to understand for equal
adverse listening conditions compared to the IEEE sentences.
Objective measures, in general, do not exploit this a priori
knowledge and will therefore need a different mapping func-
tion for each corpus. Motivated by this, the mapping procedure
is applied independently for both corpora denoted by fpantale
and figgg. Moreover, for the Dantale corpus only the data from
the ITFS listening test is used to fit the mapping, which is then
reused for the single-channel noise reduction conditions.

B. Reference Objective Measures

The results of STOI are compared with five other reference
objective measures which are all promising candidates for in-
telligibility prediction of TF-weighted noisy speech. In this sec-
tion, some details will be given for each model.

1) Dau Auditory Model: The perceptual model developed
by Dau et al. [28] (DAU) acts as an artificial observer and is
originally used for accurately predicting masking thresholds for
various masking conditions [29]. More recently, it is also shown
that the model can be used as a good intelligibility predictor for
ITFS-processed speech [13], [15]. We compare STOI with the
intelligibility-model based on the Dau auditory model as pro-
posed by Christiansen ef al. [15]. This model is already evalu-
ated with the ITFS intelligibility data from Section III-A [15]
where good prediction results were obtained. It is of interest to
see its performance compared to STOI. First, the spectro-tem-
poral internal representations of x and y are determined as de-
scribed in [28], followed by a segmentation in 20-ms frames
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within each auditory channel. Subsequently, the internal presen-
tations within each frame of the clean and degraded speech are
compared by means of a correlation coefficient jointly over time
and frequency. As proposed by Christiansen ef al. only a subset
of frames with high speech energy were considered from which
an average correlation coefficient is obtained.

2) Coherence Speech-Intelligibility Index: The coherence
speech-intelligibility index (CSII) [6] is based on the coherence
function which equals the normalized cross-spectral density
between the clean and degraded speech. The coherence function
is then translated to several frequency-band dependent SDRs,
which are combined to one score as in the conventional speech
intelligibility index (SII) [3]. That is, the SDRs are limited and
normalized and are combined by computing a weighted av-
erage based on perceptual band-important functions (BIFs). It
is shown that CSII can successfully predict the effect on speech
intelligibility due to nonlinear types of speech distortions like
peak-clipping and center-clipping [6]. Recent results show that
by using signal-dependent BIFs instead [14], the performance
of CSII with respect to single-channel noise-reduced speech
signals will increase significantly. This CSII variant is also
used for the comparison with STOI (referred to as CSII;q,
W4, p = 1 by Ma et al. [14]).

3) Normalized Covariance Based Speech Transmission
Index: The normalized covariance based speech transmission
index CSTI is based on the correlation coefficient between
the band magnitude envelopes within 8 octave bands [7], [30].
The measure shows good results with respect to various types
of signal distortions, e.g., clipping and spectral subtraction
[7]. The correlation coefficients per band are translated to an
SNR and combined in a similar way as with the CSII. Also
for this measure new BIFs were recently proposed in order to
improve its performance with respect to single-channel noise
reduced speech [14]. These BIFs are also used in this paper for
comparison with STOI (referred to as NCM, Wi(l), p=1.5by
Ma et al. [14]).

4)  Frequency-Weighted Segmental SNR: The fre-
quency-weighted segmental SNR (FWS) is included for
comparison as proposed by Hu and Loizou [26]. The mea-
sure determines the SNR within several frequency bands in
short-time frames (20 ms) which are limited and normalized.
Here, the clean and processed speech frames are first nor-
malized to have unit area. This normalization procedure was
found to be of critical importance in order to predict the speech
quality of enhanced speech [26]. In addition, FWS also showed
promising results with respect to predicting the speech-intel-
ligibility of single-channel noise-reduced speech [14]. Again,
new BIFs are used as proposed by Ma et al. (referred to as
fwSNRseg, p = 1 by Ma et al. [14]) in order to combine the
clipped and normalized SNRs.

5) Normalized Subband Envelope Correlation: The final in-
telligibility measure is based on the normalized subband enve-
lope correlation (NSEC) [16]. This model is already evaluated
with the ITFS intelligibility data from Section III-A) [16] where
good prediction results were obtained. Hence, it is of interest to
compare its performance with STOI. First, a 64-channel gam-
matone filterbank is applied on the clean and processed speech,
after which the normalized, compressed and high-pass filtered
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intensity envelopes are extracted. The eventual distance between
the clean and processed speech is then defined by the normal-
ized correlation over all time and frequency points. Similarly as
with DAU, the correlation is determined jointly over time and
frequency.

V. RESULTS

First the performance of STOI in terms of several correla-
tion measures will be reported for each listening test after which
more details are given about how the STOI intelligibility pre-
diction errors are distributed over the various listening tests and
processing conditions. Then the effect of the clipping parameter
[ and the analysis length N is analyzed followed by a compar-
ison with several other intelligibility models.

A. Correlation Between STOI and Intelligibility Scores

The performance of STOI is evaluated by means of the cor-
relation coefficient (p) and the standard deviation of the predic-
tion error (o). A higher p denotes better performance while for
o, lower values represent better results. Both merits are applied
on the mapped objective scores, i.e., f(d). The scatter-plots for
all three listening tests are shown in Fig. 6, where their corre-
sponding figures of merit are indicated at the top of each plot. In
addition, the applied mapping function f(d)is shown. Table II
summarizes the obtained values for the free parameters of the
applied mappings.

The plots clearly show good performance by means of a
strong monotonic relation between STOI and the speech-intel-
ligibility scores, for all three listening tests. This is reflected
in the correlation coefficients which are all above 0.9 and the
obtained standard deviations of the predictions errors, which
are below 9%. It can be observed from the plots in Fig. 6 that
the logistic function for the IEEE sentences is shifted more to
the right compared to the mapping function for the Dantale
sentences: given a STOI score, the actual intelligibility score for
the IEEE sentences is slightly lower compared to the Dantale
sentences. As hypothesized in Section IV-A, this is probably
due to the fact that the Dantale sentences are generated from a
closed set of words, which makes them more intelligible than
IEEE sentences under equal adverse conditions.

B. Analysis of Absolute Intelligibility Predictions

As already mentioned in the introduction, the aim for STOI is
to have a monotonic relation with speech intelligibility and not
necessarily to predict absolute intelligibility scores. However,
by mapping the STOI outcomes using the logistic function f(d),
some insight will be gained in the distribution of the prediction
errors of STOI. The results are shown in Figs. 7-9 for the three
listening tests from Sections III-A-III-C, respectively.

Fig. 7 shows the results for the first listening experiment for
all noise-types, SNRs and other specific ITFS-settings (similar
to Fig. 3). The plots reveal that STOI correctly predicts the ef-
fect of the LC-parameter on the speech intelligibility, for almost
all cases. This includes the extreme cases where essentially a
noise-only signal (—60-dB SNR) is ITFS-processed, resulting
in almost 100% intelligible speech for specific LC-values. Note,
that for this case all fine-structure of the clean speech is lost
and the signals sound rather artificial; a challenging condition.



2132

100

80

60

4o

Words correct (%)

20}

02 03 04 05 06 07 08

100

8o} -

601

40}

Words correct (%)

20t Single-Channel NR

- fDantaIe(d)

02 03 04 05 06 07 08
d
(c)p=0.96,6=7.1%

100

80t

60

401

Words correct (%)

20} ITFS with errors |

fiege(@

0.2 0.3 0.4 0.5 0.6 0.7 0.8
d
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speech (see Section III-A), (b) single-channel noise-reduced speech (see
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TABLE II
USED VALUES FOR THE FREE PARAMETERS OF THE NONLINEAR MAPPINGS,
FOR THE DANTALE AND IEEE CORPUS

a b
FDantate (d) 145435 7.0792
fieee (d) -17.4906  9.6921

Small problems are observed for both the bottles-noise and the
car-noise mixed at 50% SRT for the unprocessed noisy speech
(UN) and low SNR-corrected LC values (first, third, fourth, and
seventh plot of top-row in Fig. 7). For these conditions, STOI
underestimates the speech intelligibility. An explanation for this
could be the fact that these noise types have a significantly dif-
ferent average spectrum compared to the clean speech. There-
fore, the errors are distributed in different frequency channels
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compared to the SSN and cafe-noise conditions. Perhaps these
problems can be solved by introducing band-importance func-
tions, see, e.g., [14]. Nevertheless, these problems are rather
modest and generally STOI shows good agreement with the
data. Note, that STOI was developed with simplicity in mind:
the goal was to develop a model with very few parameters. For
this reason we did not include any band-importance functions.

The absolute predicted intelligibility scores for the
single-channel noise-reduced speech are shown in Fig. 8.
From this plot we observe that for low SNRs the intelligibility
scores for the SSN-conditions are slightly overestimated. How-
ever, these small overestimations are approximately equal for
both the unprocessed noisy condition and the noise reduction
algorithms EM and SG. By comparing the relative difference in
predicted intelligibility scores before and after noise reduction,
it can be concluded that STOI correctly predicts no significant
effect on the intelligibility. This is in line with the results from
the listening test. Similarly, for the cafe-noise no significant
change in intelligibility is reported. Note, that several STI-based
speech-intelligibility measures report an incorrect intelligibility
improvement after noise reduction, e.g., [7], [10], [11].

Fig. 9 shows the STOI predictions for the ITFS-processed
speech with artificially introduced errors from Section III-C.
From the plot we can observe that STOI correctly predicts the
effect of the introduced errors in the IBM. Specifically, the
Type-I and Type-II error predictions are in strong correspon-
dence with the actual intelligibility scores. For the general
error introduced in the IBM, the plots reveal small deviations
between the different noise types, i.e., the 2-talker noise con-
ditions are slightly overestimated and the 20-talkers noise is
slightly underestimated. However, these errors turn out be
small.

C. Effect of Parameters N and 3

The correlation coefficients obtained for the dif-
ferent values of N €  [10,20,30,50,100,500] and
B € [—o0,—35,—25,—15,—10], with respect to the ITFS
listening experiment from Section III-A, are shown in Fig. 10.
From the plot it can be observed that maximum correlation
is obtained with N = 30 and = —15 dB. The same
conclusion holds for observing the standard deviations of the
prediction errors (not shown). In general, the segment length
N has a bigger impact on the results compared to the clipping
procedure.

The results with respect to N are in line with the rationale
behind STOI which was explained in Section I-A. While an
estimated correlation coefficient based on very long segments
(tens of seconds) may be dominated by outliers, an analysis
length which is too short (20-30 ms) may exclude important
temporal modulation frequencies. Several listening experiments
show that temporal modulations above 2-3 Hz are important for
intelligibility [17], [31]. For N = 30, STOI will be sensitive for
temporal modulations of 2.6 Hz and higher which is roughly in
accordance with the results of these listening tests. Moreover,
the analysis length of N = 30 (384 ms) is also more in line
with the maximum temporal integration properties of the audi-
tory system, which is in the order of hundreds of milliseconds,
e.g., [18].
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D. Comparison With Other Intelligibility Models

For the five reference objective measures the same evaluation
procedure is used as with STOI (as described in Section IV).
An additional figure of merit is included: the Kendall’s Tau (7),
e.g., [32], where a higher 7 implies better performance. The
Kendall’s Tau is only based on the ranking and therefore inde-
pendent of the applied mapping from model output to predicted

intelligibility scores, as long as the mapping is monotonic. It is
included to make the results more transparent, since the map-
ping procedure may show a better fit with the data for certain
intelligibility models.

The results are shown in Fig. 11, where each column of
subplots represents one of the three listening tests and each
row represents a figure of merit. The average of the three
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prediction error (o).

outcomes for each merit is shown in the last column. From
these results it can be concluded that STOI has the best av-
erage performance for all three listening tests with respect to
all figures of merit. Also for the results with respect to each
listening test independently, STOI has better performance
compared to almost all other measures. Only CSII has similar
performance for the “single-channel noise reduction” listening
experiment and DAU shows slightly better results for the “ITFS
with errors” data. Less good results were obtained with FWS
which ended up lowest in ranking for the average results for all
listening tests. In general, the rankings based on the correlation
coefficient are roughly in accordance with the remaining two
figures of merit, except for CSTI and NSEC when evaluated
for the single-channel noise reduced speech. It turns out that
for these two measures, the mapping function fpantale, Which
was only trained on the ITFS-processed data, did not fit the
noise-reduction dataset.
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The good results obtained with DAU and NSEC for the first
listening experiment (ITES) are in accordance with the fact that
these two measures were also designed and optimized for the
ITFS listening experiment by Kjems et al. [19]. Furthermore,
the performance and ranking of CSII, FWS and CSTI for the
single-channel noise-reduction intelligibility data is in agree-
ment with the results from Ma et al. [14].

VI. DISCUSSION

One may argue that STOI has better performance compared
to the reference objective measures due to the fact that the pa-
rameters 5 and N have been optimized for. However, instead
of extensively tuning these parameters, a limited amount of set-
tings have been tested only with respect to the first listening test.
Other settings than § = —15 dB and N = 30 for the last two
listening experiments have not been considered. Note, that also
NSEC and DAU were designed and optimized for the intelligi-
bility data from Kjems et al. [19]. Furthermore, the output sig-
nals of the single-channel noise-reduction algorithms from the
second listening experiment have different types of signal arti-
facts compared to the ITFS-processed speech. Also the ITFS-
processed speech with artificially introduced errors (the third
listening experiment) is based on a different speaker and dif-
ferent noise types. The latter two listening experiments contain
a significant amount of “musical noise” due to their DFT-based
approach, in contrast to the gammatone-based approach of the
first listening experiment. In summary, STOI has not been opti-
mized for listening tests 2 and 3.

Next to STOI, DAU also showed good performance for all
listening tests. However, in contrast to STOI, DAU determines
a correlation coefficient in segments of only 20 ms. In line
with the results from Section V-C this could be a reason for
their difference in performance with respect to the first two
listening tests where STOI shows better performance. However,
this is not in agreement with the results for the last listening
experiment, where DAU shows slightly better performance than
STOI. Maybe this can be explained by the use of the so-called
adaptation loops in the DAU-model, which simulate the adap-
tation properties of the auditory nerve [28]. This stage shows a
log-compressive behavior for stationary input signals while fast
fluctuations are linearly transformed. As a consequence, DAU
is more sensitive to transient regions which are of importance
for speech intelligibility. This unique property of DAU is not
represented in any of the other intelligibility models contained
in this research. It would be of interest to investigate the contri-
bution of these adaptation loops with respect to intelligibility
prediction (e.g., by excluding them or replacing this stage with
a simple log-transform).

Although not as good as STOI and DAU, CSTTI also showed
good performance with respect to all three listening tests. Note,
that without the clipping procedure CSTI and STOI are sim-
ilar measures in the sense that they are both based on a corre-
lation coefficient per band. However, CSTI determines a cor-
relation coefficient for the complete signal at once instead of
the short-time segments used by STOIL In line with the ear-
lier results shown in Fig. 10, this difference in analysis window
length probably explains their difference in performance. The
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same holds for NSEC which also considers the correlation for
the complete signal at once.

CSII showed good results for the second and third listening
experiment; however, poor results were obtained with respect
to predicting the intelligibility scores for the ITFS processed
speech data. It was observed that CSII predicted incorrectly that
all the ITFS-processed noisy speech signals mixed at —60-dB
SNR were unintelligible. An explanation for this is the fact that
CSII is sensitive for degradations in the temporal fine structure
of the clean speech (in contrast to STOI). This is a direct conse-
quence of the coherence function, which takes into account the
phase component of the complex DFT coefficients. Note, that
for the ITFS-processed noisy signals mixed at —60-dB SNR,
the temporal fine structure is completely lost.

FWS is the only measure in this evaluation which is not based
on a correlation-based comparison between the clean and de-
graded speech. Instead it uses a conventional SNR per frequency
band. This property and the relatively short analysis window of
20 ms probably explains its low ranking compared to all other
intelligibility models.

Although STOI is meant for predicting the intelligibility of
TF-weighted noisy speech, it would be of interest to investigate
its performance with respect to other types of degradations. A
recent evaluative study [33] showed promising results for STOI
with respect to envelope thresholding: a nonlinear operation that
consists of setting to zero any samples of the original envelope
that are below a threshold [7]. Also CSTI showed good results
with respect to envelope thresholding [7]. As already explained,
CSTI and STOI are similar in the sense that they are both based
on the correlation coefficient between the temporal envelopes of
the clean and degraded speech per frequency band. Goldsworthy
and Greenberg concluded that with this correlation-based ap-
proach, CSTI was not capable to predict the intelligibility of
reverberated speech in quiet and low noise environments [7].
It could be the case that this conclusion also holds for STOI.
However, more research is needed to investigate the effect of the
clipping procedure and shorter analysis window length of STOI
compared to CSTI. Note, that STOI does work well for additive
noise since each of the three different listening tests contain un-
processed noisy speech for different noise types and SNRs.

STOI does not take into account some type of absolute
threshold in quiet. Therefore, its predictions may not be accu-
rate for operations which significantly reduce the level per band
and do not have a strong impact on its temporal envelope (e.g.,
as with low-pass or high-pass filtering).

VII. CONCLUSION

A short-time objective intelligibility measure (STOI) is pre-
sented based on the correlation between temporal envelopes
of the clean and degraded speech in short-time (382 ms) seg-
ments. This is different from other measures, which typically
consider the complete signal at once, or use a very short analysis
length (20-30 ms). Experiments with different segment lengths
indeed show the benefit by using segment-lengths in the order
of hundreds of milliseconds. Further extensive evaluation shows
that STOI has high correlation with the speech intelligibility
for three different listening tests (p > 0.92 for all listening
tests). For each of these three listening tests, noisy speech is
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processed by some type of TF-varying gain function, including
a signal processing technique called “ideal time frequency seg-
regation” and conventional single-channel noise reduction algo-
rithms. In general, STOI showed better correlation with speech
intelligibility compared to five other reference objective intel-
ligibility models. A free Matlab implementation is provided at
http://siplab.tudelft.nl/.
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