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ABSTRACT
Existing objective speech-intelligibility measures are suitable for
several types of degradation, however, it turns out that they are less
appropriate for methods where noisy speech is processed by a time-
frequency (TF) weighting, e.g., noise reduction and speech separa-
tion. In this paper, we present an objective intelligibility measure,
which shows high correlation (rho=0.95) with the intelligibility of
both noisy, and TF-weighted noisy speech. The proposed method
shows significantly better performance than three other, more so-
phisticated, objective measures. Furthermore, it is based on an in-
termediate intelligibility measure for short-time (approximately 400
ms) TF-regions, and uses a simple DFT-based TF-decomposition. In
addition, a free Matlab implementation is provided.

Index Terms— intelligibility prediction, speech enhancement,
noisy speech.

1. INTRODUCTION

Speech processing systems, such as a speech-enhancement scheme
or an intelligibility improvement algorithm in a hearing aid, often
introduce degradations and modifications to clean or noisy speech
signals. To determine the effect of these methods on the speech-
intelligibility, the algorithm at hand can be evaluated by means of
subjective listening tests and/or an objective intelligibility measure
(OIM). Accurate and reliable objective evaluation methods are of in-
terest, since they might replace costly and time consuming subjective
tests, at least in some stages of the algorithm development process.

One of the first OIMs was developed at AT&T Bell Labs by
French and Steinberg in 1947 [1], currently known as the articula-
tion index (AI) [2]. AI evolved to the speech-intelligibility index
(SII), and has been standardized in 1997 under ANSI S3.5-1997 [3].
Later, the speech transmission index (STI) [4] was proposed, which,
in contrast to AI, is also able to predict the intelligibility of various
simple nonlinear degradations, e.g. clipping. The majority of re-
cent published models are still based on the fundamentals of AI, e.g.
[5, 6] and STI (see [7] for an overview of STI-based measures).

Although the just mentioned OIMs are suitable for several types
of degradation (e.g., additive noise, reverberation, filtering, clip-
ping), it turns out that they are less appropriate for methods where
noisy speech is processed by a time-frequency (TF) weighting. This
includes single-microphone speech-enhancement algorithms, e.g.,
[8], but also speech separation techniques like ideal time frequency
segregation (ITFS) [9], where typically a binary TF-weighting is
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used. For example, STI and various STI-based measures predict
an intelligibility improvement when spectral subtraction is applied
[7, 10]. This is not in line with the results of listening experiments
in literature, where it is reported that general single-microphone
speech-enhancement algorithms are not able to improve the intel-
ligibility of noisy speech [10, 11]. Furthermore, OIMs like the
coherence SII [5] and a covariance-based STI procedure, [12, 7],
both show low correlation with the intelligibility of ITFS-processed
speech [13, 14]. Only recently, two different OIMs are proposed
which indicate promising results for ITFS-processed speech [14, 15].

To analyze the effect of certain signal degradations on the
speech-intelligibility in more detail, the OIM must be of a simple
structure, i.e., transparent. However, some OIMs are based on a
large amount of parameters which are extensively trained for a cer-
tain dataset. This makes these measures less transparent, and there-
fore less appropriate for these evaluative purposes. Moreover, OIMs
are often a function of long-term statistics of entire speech signals,
and do not use an intermediate measure for local short-time TF-
regions. With these measures it is difficult to see the effect of a
time-frequency localized signal-degradation on the speech intelligi-
bility.

In this paper we present an OIM, which shows high correla-
tion with the intelligibility of both noisy and ITFS-processed noisy
speech. It has a relatively simple structure, and is based on an in-
termediate measure for short-time (≈400 ms) TF-regions. In addi-
tion, a simple DFT-based TF-decomposition is used. Due to these
properties, it is a transparent model which is suitable for evaluative
purposes.

2. A SHORT-TIME OBJECTIVE INTELLIGIBILITY
MEASURE

The proposed method is a function of the clean and processed
speech, denoted by x and y, respectively. The model is designed for
a sample-rate of 10000 Hz, in order to cover the relevant frequency
range for speech-intelligibility. Any signals at other sample-rates
should be resampled. Furthermore, it is assumed that the clean and
the processed signal are both time-aligned.

First, a TF-representation is obtained by segmenting both signals
into 50% overlapping, Hanning-windowed frames with a length of
256 samples, where each frame is zero-padded up to 512 samples
and Fourier transformed. Then, an one-third octave band analysis is
performed by grouping DFT-bins. In total 15 one-third octave bands
are used, where the lowest center frequency is set equal to 150 Hz.
Let x̂ (k, m) denote the kth DFT-bin of the mth frame of the clean
speech. The norm of the jth one-third octave band, referred to as a
TF-unit, is then defined as,
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Xj (m) =

√√√√√k2(j)−1∑
k=k1(j)

|x̂ (k, m)|2, (1)

where k1 and k2 denote the one-third octave band edges, which are
rounded to the nearest DFT-bin. The TF-representation of the pro-
cessed speech is obtained similarly, and will be denoted by Yj (m).

The intermediate intelligibility measure for one TF-
unit, say dj (m), depends on a region of N consecutive
TF-units from both Xj(n) and Yj(n), where n∈M and
M={(m−N+1) , (m−N+2) , ..., m−1, m}. First, a local
normalization procedure is applied, by scaling all the TF-units

from Yj(n) with a factor α =
(∑

n Xj (n)2/
∑

n Yj (n)2
)1/2

,
such that its energy equals the clean speech energy, within that
TF-region. Then, αYj(n) is clipped in order to lower bound the
signal-to-distortion ratio (SDR), which we define as,

SDRj (n) = 10 log10

(
Xj (n)2

(αYj (n) − Xj (n))2

)
. (2)

Hence,

Y ′ = max
(
min

(
αY, X + 10−β/20X

)
, X − 10−β/20X

)
, (3)

where Y ′ represents the normalized and clipped TF-unit and β de-
notes the lower SDR bound. The frame and one-third octave band
indices are omitted for notational convenience. The intermediate in-
telligibility measure is defined as an estimate of the linear correlation
coefficient between the clean and modified processed TF-units,

dj(m)=

∑
n

(
Xj(n)− 1

N

∑
l

Xj(l)

)(
Y ′j (n)− 1

N

∑
l

Y ′j (l)

)
√∑

n

(
Xj(n)− 1

N

∑
l

Xj(l)

)2∑
n

(
Y ′j (n)− 1

N

∑
l

Y ′j (l)

)2
,

(4)
where l ∈ M. Finally, the eventual OIM is simply given by the
average of the intermediate intelligibility measure over all bands and
frames,

d =
1

JM

∑
j,m

dj (m), (5)

where M represents the total number of frames and J the number of
one-third octave bands.

In our experiments, we used different values of N∈[20, 30, 40,
50, 60] and β∈[-∞ , -30, -20, -15, -10] 1. Maximum correlation is
obtained with β=-15 and N=30, which means that the intermediate
measure depends on speech information from the last ≈400 ms.

3. SUBJECTIVE DATA

The subjective data is obtained from a listening experiment con-
ducted by Kjems et al. [16], where noisy speech signals are ITFS-
processed. ITFS is a technique which can improve the intelligibility
of noisy speech significantly by applying a binary modulation pat-
tern in a TF-representation. This binary modulation pattern has a
value equal to one, when the SNR within a certain TF-component ex-
ceeds a user-defined local criterion (LC), and is commonly referred

1The SDR-based clipping in Eq. (3) is general for all β. However, since
β < 0 in our experiments, the second argument of the max-operator is always
negative, and can therefore be discarded.

to as the ideal binary mask (IBM). It is ideal in the sense that the
noise is needed separately from the clean speech. A mathematical
description for the IBM is given as follows,

IBM (t, f) =

{
1 if T (t, f) − M (t, f) > LC
0 otherwise

, (6)

where T (t, f) and M (t, f) denote the signal power in dBs, at time t
and frequency f , for the target (clean speech) and the masker (noise
only), respectively. An alternative way of calculating the IBM is
also included in [16] which is only based on the clean speech. This
so-called ’Target Binary Mask’ (TBM) is obtained by comparing the
clean speech power with the power of a signal with the long-term
spectrum of the clean speech, within a TF-component. Therefore,
the noise itself is not needed in order to determine the binary mask.
For more details about the used TF-decomposition and reconstruc-
tion of the eventual speech signals, the reader is referred to [16].

The test signals are taken from the Dantale II corpus [17], where
each excerpt consists of five words, all spoken by the same Dan-
ish female speaker. These sentences are degraded by four different
types of additive noise: speech shaped noise (SSN), cafeteria noise,
noise from a bottling factory hall and car interior noise at three dif-
ferent SNRs: 20% and 50% speech reception threshold (SRT) and
an SNR of -60dB, which represents essentially pure noise. Eight
different LC-values are chosen, including an unprocessed condition
where only the noisy speech is presented, i.e., LC=-∞.

For the listening experiment, 15 normal-hearing native Danish
speaking subjects participated, where the correctly recognized words
are recorded by an operator without providing any form of feedback.
Each subject listened to two five-word sentences for each condition.
The average score for all users for one condition is then obtained
by the average percentage of correct words. In total, this gives us
(4∗IBM + 3∗TBM)∗(3∗SNR)∗(8∗LC)=168 conditions to be tested
in the listening experiment. Only three TBM conditions are included
since the TBM equals the IBM for the case that SSN is used, by
definition.

4. MODEL EVALUATION

In order to evaluate the model, we compare the proposed method
with three other OIMs which will be described in the next section,
followed by a description of the evaluation procedure.

4.1. Reference Objective Measures
The first model is a normalized covariance-based STI-procedure [12,
7] (CSTI), which determines the correlation coefficient between the
band intensity envelopes of the processed and clean speech. This
correlation coefficient is then translated to an SNR, such that it can
be plugged into the original STI-procedure [4]. Compared to other
STI-based measures, CSTI showed good results with several types of
nonlinear signal degradations, e.g., clipping and spectral subtraction
[7]. Implementation details can be found in [7].

The second model is a sophisticated perceptual model (DAU)
developed by Dau et al. [18], which can be used as an artificial
observer for accurately predicting masking thresholds for various
maskers. Its final distance measure is calculated by means of a linear
correlation coefficient between the internal spectro-temporal repre-
sentations, of the clean and processed speech, on short, 50% over-
lapping segments, as was proposed in [14]. The final outcome is
then based on the average of these intermediate correlation coeffi-
cients. The model shows high correlation with the intelligibility of
ITFS-processed speech, e.g., [13].
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The last model is a simple objective measure based on the nor-
malized subband envelope correlation (NSEC) [15]. This model
shows very good results with respect to the same IBM-conditions
used in this paper [15]. First, a TF-decomposition is performed, after
which the temporal envelope is frequency normalized, compressed,
and followed by a DC-removal. The eventual outcome is then calcu-
lated by means of the correlation between all TF-points of the clean
and processed speech.

4.2. General Procedure
Out of all the 168 ITFS-processing conditions, 75 conditions have a
subjective intelligibility score above 80%. In order to prevent clus-
tering for these high scores, which may bias the objective intelli-
gibility prediction results, 41 randomly picked conditions, with a
score above 80%, are discarded. As a consequence, the scores of the
remaining subset are approximately uniformly distributed between
0%-100%.

For each subset-condition, 30 five-word sentences are randomly
chosen from the corpus and concatenated. The clean and pro-
cessed signal are then segmented into 50% overlapping, Hanning-
windowed frames with a length of 256 samples where the maxi-
mum energy frame of the clean speech is determined. Finally, both
signals are reconstructed, excluding all the frames where the clean
speech energy is lower than 40 dB with respect to the maximum
clean speech energy frame. With this procedure, time-frames with
no significant speech energy (mainly silence regions), and therefore
no contribution to the intelligibility, will not be included.

To compare the results between the objective measures and the
subjective intelligibility scores directly, a mapping is needed in or-
der to account for a nonlinear relation between the objective and
subjective values. For the proposed method, and the CSTI a logistic
function is applied,

f (d) =
100

1 + exp (ad + b)
, (7)

while for DAU and NSEC a better fit was observed with the follow-
ing function,

f (d) =
100

1 + (ad + b)c , (8)

where a, b and c in (7) and (8) are free parameters, which are fitted
to the subjective data with a nonlinear least squares procedure, and
d denotes the objective outcome. Due to better results with the latter
proposed mapping for NSEC, the original logistic mapping which
was proposed in [15] is omitted.

The performance of all the objective measures is evaluated by
means of the root of the mean squared prediction error (RMSE),

σ =

√
1

S

∑
i

(si − f (di))
2, (9)

where s refers to the subjective score, S denotes the total number
of conditions in the subset, and i runs over all subset-conditions.
In addition, the correlation coefficient between the subjective and
objective data is calculated,

ρ =

∑
i

(si − μs)
(
f (di) − μf(d)

)
√∑

i

(si − μs)
2 ∑

i

(
f (di) − μf(d)

)2
, (10)

where μf(d) and μs denote the average values of the objective and
subjective data, respectively.

Model a b c

PROP -13.1903 6.5192 -

DAU -2.8892 2.1710 2.4187

NSEC -3.1805 2.8792 1.9055

CSTI -5.5795 1.6113 -

Table 1. Used values for the free parameters of the nonlinear map-
pings, for each OIM.

5. RESULTS AND DISCUSSION

The results of the proposed method (PROP), together with the results
of the three reference OIMs are shown in Fig. 1. Each plot shows the
objective versus the subjective data, together with the nonlinear map-
ping. The unprocessed noisy speech conditions, i.e. LC = −∞, are
denoted by the crosses and the remaining ITFS-processed speech is
represented by the dots. The two figures of merit are presented on
top of each plot. Table 1 denotes the obtained values for the free
parameters of the nonlinear mappings.

The proposed method shows the best results for both figures
of merit, with σ=10.2% and ρ=0.95. After the proposed method,
both the complex DAU-model and NSEC indicate reasonable results,
however, the plots clearly show that these models are only reliable
for the conditions where the intelligibility score is relatively high.
This behavior is not present with the proposed method, where the
mapping shows a better fit with the data over the complete intelligi-
bility range. The lowest performance, with respect to the two figures
of merit, is observed with the CSTI, which makes it a less reliable
intelligibility estimator for these ITFS-processed speech signals.

The crosses in the scatter-plots reveal that all three reference ob-
jective measures significantly underestimate the intelligibility scores
for most unprocessed noisy speech conditions, compared to the
ITFS-processed signals. Lower bounding the SDR per TF-unit to
-15dB, with the proposed method, was found to be of critical impor-
tance in order to avoid this bias. This makes the proposed method
both reliable for noisy and ITFS-processed speech. Note, that the
normalization of the processed speech with α in Eq. (3), before the
clipping, must be applied, despite the fact that the correlation coef-
ficient in Eq. (4) itself is independent on any linear scaling of the
clean and processed signal. Omitting this stage might result in clip-
ping all TF-units, due to large global energy differences between the
clean and processed speech for certain ITFS-conditions (e.g., noisy
mixtures at -60dB).

Despite the similarity between ITFS, and conventional speech-
enhancement algorithms, it is not guaranteed that the proposed OIM
can predict the intelligibility of such algorithms. However, pre-
liminary experiments indicate that the proposed method does not
report a significant intelligibility change for a well-known speech-
enhancement scheme [8]. This observation is more in line with lit-
erature [11], than the results of conventional OIMs, which predict a
significant intelligibility improvement [7, 10]. Currently, the model
is evaluated more extensively with respect to these types of enhanced
signals.

6. CONCLUSIONS

A simple objective intelligibility measure (OIM) is presented, which
shows high correlation (ρ=0.95) with the intelligibility of time-
frequency (TF) weighted noisy speech. The method shows signif-
icantly better performance than three other, more sophisticated, ref-
erence OIMs. Furthermore, it turned out that the model is also re-
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Fig. 1. Results for the proposed method (left plot), together with the results for the three reference OIMs. The unprocessed noisy speech
conditions are denoted by the crosses, and the remaining ITFS-processed conditions are represented by the dots. The gray line denotes the
mapping used to translate the objective output to an intelligibility score. On top of each plot, the RMSE (σ) and the correlation coefficient
(ρ), between the subjective and objective intelligibility scores, are given.

liable for the noisy unprocessed speech. This was not the case for
the reference OIMs, which all underestimated the intelligibility of
the unprocessed noisy speech, compared to the TF-weighted noisy
speech. The model is based on an intermediate intelligibility mea-
sure for short-time (≈400 ms) TF-regions and uses a simple DFT-
based TF-decomposition. These properties make the model trans-
parent, and therefore suitable for more detailed analysis of the ef-
fects of TF-weighting on noisy speech. A free Matlab implemen-
tation is provided at http://siplab.tudelft.nl/users/
cees-taal/.
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