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ABSTRACT

In this paper, we take a graph-theoretical approach to in-

crease the convergence rate of an earlier proposed distributed

delay-and-sum beamformer (DDSB) for speech enhance-

ment. Instead of updating estimates across two neighboring

nodes as in the DDSB, the proposed clique-based distributed

beamformer (CbDB) updates estimates across two neighbor-

ing non-overlapping cliques. Theoretical and experimental

analysis shows that the proposed method improves the con-

vergence speed of the DDSB. Moreover, the presented ap-

proach is more robust than a reference algorithm that is based

on clusters, since cliques generally have a better connectivity

than clusters. This is also shown by the experimental results.

Index Terms— Clique-based distributed beamformer,

speech enhancement, randomized gossip.

1. INTRODUCTION

In applications like hearings aids and mobile telephony,

beamforming algorithms for noise reduction, e.g., [1], are

often used to improve quality and intelligibility of noisy

speech. However, conventional centralized beamforming

algorithms generally use a rather limited number of micro-

phones at fixed locations, which limits the performance. This

can be improved using acoustic wireless sensor networks

(AWSNs), where many low-cost microphones each with its

own individual processor are distributed over the environ-

ment. For large AWSNs, traditional centralized beamformers

are neither robust nor scalable. In contrast to centralized

beamformers, distributed beamformers only need to perform

local communication and local processing, they scale well

as the network grows, and exhibit robustness as there is no

centralized processor. Recently, there has been a growing

interest in distributed beamforming in AWSNs, e.g., [2, 3, 4].

In [3] we introduced an asynchronous distributed delay-

and-sum beamformer (DDSB), which is based on the asyn-

chronous randomized gossip algorithm [5]. Without topology

constraint, the DDSB converges to the optimal centralized

beamformer. In [6] it was shown that this approach can also

be combined with a message passing algorithm to compute

a minimum variance distortionless response (MVDR) beam-

former in a distributed way. However, the convergence rate

of the asynchronous DDSB is relatively slow, since only one

pair of neighboring nodes can update its estimates per time-

slot. An obvious way to improve the convergence speed is

to apply synchronous randomized gossip [5] as applied in

[7]. Although this improves the convergence speed, other

approaches are required to further improve the convergence

speed of randomized gossip-based beamforming.

Recent improvements of the randomized gossip algo-

rithm exploit the principle of broadcasting, e.g., [8, 9]. In

[9] this is done by forming overlapping clusters of nodes,

and subsequently averaging per cluster instead of per node-

pair. This improves the convergence speed. A further im-

provement is obtained by averaging across two neighboring

non-overlapping clusters as proposed in [8]. Both algorithms

depend on cluster heads, which makes them sensitive to

changes in network topology, in particular if a cluster head

disappears from the network. In that case, the remaining

nodes in the cluster become useless and require a new forma-

tion of clusters. Instead of using clusters, we propose in this

paper to improve the convergence speed of the randomized

gossip [5] using non-overlapping cliques. The randomized

gossip is then based on averaging across two neighboring

non-overlapping cliques, which will lead to a large improve-

ment of the convergence speed of randomized gossip. More-

over, as cliques are generally better connected than clusters,

the presented approach will be more robust (in terms of node

failures) than the cluster-based approach [8].

The presented framework is subsequently combined with

the DDSB [3]. We refer to this algorithm as clique-based dis-

tributed beamformer (CbDB). Without central unit and net-

work routing requirements, the CbDB converges to the cen-

tralized beamformer. Since the CbDB performs only local

communication and local processing, there is no constraint on

the number and location of microphones and no risk of having

a single point failure. Moreover, we prove that the CbDB con-

verges faster than the DDSB in [3]. The convergence analysis

of the CbDB is tested in a simulated AWSN, which shows that

the convergence rate compared to the DDSB is significantly

improved, and that the robustness of the CbDB is improved

compared to the cluster-based distributed beamformer.
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2. PROBLEM FORMULATION AND NOTATION

We consider an AWSN as a randomly connected undirected

graph G = (V, E), with V the vertex set consisting of N
acoustic sensor nodes and E the edge set of undirected com-

munication links between every set of two connected nodes.

We assume that each node i ∈ V has |Ni| neighbors with Ni

the set of neighbors of node i. Every node captures a mix be-

tween a desired target speech source and noise sources present

in the environment. Assuming that speech and noise sources

are uncorrelated and additive, the signal model for each node

i in the discrete Fourier transform (DFT) domain is given as

Yi(k,m) = Si(k,m) + Vi(k,m), (1)

with Yi(k,m), Si(k,m) and Vi(k,m) the noisy speech, target

speech and noise DFT coefficient, respectively, at frequency-

bin index k and time-frame index m. We assume the DFT

coefficients to have zero-mean and to be independent across

time and frequency, which allows us to omit the time and fre-

quency indices for notational convenience. Further, we con-

sider the case of a single desired speech source. The speech

Si at node i can then be written as Si = diS with S the speech

DFT coefficient at the source location and di the acoustic

transfer function from the speech source S to node i. In gen-

eral, Yi, Si, Vi and di, ∀i ∈ V are stacked in N dimensional

vectors Y, S, V and d, respectively. A vector notation of the

signal model in DFT domain is then given by Y = dS +V.

The clean speech DFT coefficient S can be estimated by

applying a spatial filter w to Y, i.e., Z = wHY, with Z the

estimated clean speech DFT coefficient and (·)H Hermitian

transposition. An often used filter is the MVDR beamformer,

that is [1]

w =
R−1

V V d

dHR−1
V V d

, (2)

with RV V the noise spectral covariance matrix. For simplic-

ity, we assume that the AWSN is in an uncorrelated noise

field. With this assumption, Vi, ∀i can be argued to be ap-

proximately spatially uncorrelated with power spectral den-

sity (PSD) σ2
Vi

, so that RV V = diag
{

σ2
V1
, · · · , σ2

VN

}

. In

case this does not hold, the presented theory can still be used

in combination with the message passing algorithm from [6].

The clean speech DFT coefficient can then be estimated as

Z =

∑N

i=1 d
∗
i σ

−2
Vi

Yi
∑N

i=1 d
∗
i σ

−2
Vi

di
, (3)

where (·)∗ denotes conjugation. Note that this beamformer is

a special case of the MVDR beamformer, but more general

than the delay-and-sum beamformer [1]. More specifically, it

still allows different noise PSDs per microphone. The cen-

tralized beamformer in Eq. (3), can be used when there is a

central processor gathering the information from all nodes in

G. However, the constraints of the communication reliabil-

ity and radius of AWSNs make the centralized beamformer

neither robust nor scalable in a large AWSN. Instead, Eq. (3)

can be implemented in a distributed way using the DDSB [3],

which is based on finding consensus across pairs of nodes in

the network. To increase convergence speed, we investigate in

this paper the use of cliques. This requires to find the cliques

in a network in a distributed way.

Finally, notice that distributed beamforming requires the

clocks of all nodes in the AWSN to be synchronized. As clock

synchronization is well studied, see e.g., [10] and we want to

focus this paper, we assume all clocks to be synchronized.

3. DISTRIBUTED DETERMINATION OF CLIQUES

A maximal clique is a fully connected sub-graph that can-

not be extended by including more nodes without ceasing to

be a clique. Since each node can belong to multiple max-

imal cliques, the maximal cliques of G can be overlapping.

To exploit the concept of maximal cliques for beamforming

based on randomized gossip, we consider non-overlapping

cliques only. Here we briefly discuss how to find a set of

non-overlapping cliques in a distributed way, such that each

node belongs to only one clique.

The approach consists of two steps. First, each node i ∈ V
finds all its maximal cliques in a distributed way. This can

be done using a slightly modified version of the first Bron-

Kerbosch algorithm [11]. In this modified version, each node

i runs the Bron-Kerbosch algorithm, where the set of candi-

date nodes that can form a clique with node i consists of the

set Ni of neighboring nodes. For each node this results in a

set of maximal cliques. Subsequently, each node should be

assigned to just one clique by local communication. Due to

space limitations we will not go into detail on how to make

the cliques non-overlapping. However, this can be done using

only local information of the neighboring nodes. In addition,

the constraint to make the cliques non-overlapping can lead

to situations where a smaller clique is selected instead of a

maximal clique. Given the set of non-overlapping cliques, we

propose in the next section a distributed consensus algorithm

via non-overlapping cliques (DCvNC).

4. DISTRIBUTED CONSENSUS ALGORITHM

The non-overlapping cliques can be used to compress the

graph by representing each clique by one single node. Let

C denote the number of non-overlapping cliques and Kc de-

note the number of nodes in clique c. Consider a connected

non-overlapping clique network GR = (VR, ER) consisting

of a set of non-overlapping cliques VR = {1, · · · , C} and a

set of edges ER, where each edge (c, l) ∈ ER is an undirected

link between two non-overlapping cliques c and l. A clique c
has |Nc| neighboring cliques. Note that GR is a compressed

version of G, since all nodes in a clique c are represented as

a single node in GR and multiple edges between two cliques

are compressed as one edge in GR.
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Each node i, i = 1, · · · , N , in the original graph G has

an initial value gi(0). First, each non-overlapping clique c in

the corresponding compressed graph GR computes its initial

value hc(0) as hc(0) =
∑

i∈c gi(0). To do so, each node i
in a clique c broadcasts its values gi(0) to all other nodes in

the clique. The average value over all cliques’ initial values

is have = 1
C

∑C

c=1 hc(0). We assume that each node i ∈
c has the list of all neighboring cliques Nc of clique c. To

facilitate a convergence analysis using the Laplacian matrix,

we assume, similar as in [8], that each edge in the compressed

graph is activated with uniform probability. Therefore, each

node i ∈ c runs a rate
|Nc|
2Kc

Poisson process independently.

Clique c becomes active when the clock of any node i ∈ c
ticks. This means that a clique c runs a Poisson process with

rate
|Nc|
2 . This corresponds to a global clock of rate |ER|,

and implies that each clique becomes active with probability
|Nc|
2|ER| . In each time-slot t, two neighboring nodes i and j in

neighboring cliques c and l, respectively, communicate with

probability pcl =
1

2|ER| and update their current values as

hc(t) = hl(t) = (hc(t− 1) + hl(t− 1)) /2, (4)

where c and l denote clique index and hc(t) denotes the value

of clique c at the end of time-slot t. Subsequently, nodes i and

j broadcast the updated estimates hc(t) and hl(t) to all the

nodes in clique c and l, respectively. Notice that after a suf-

ficient number of iterations, Eq. (4) does lead to the average

have, but generally not to the average gave = 1
N

∑N

i=1 gi(0).
In case one is interested in the average gave, a second con-

sensus algorithm can be run in order to compute Kave =
1
C

∑C

c=1 Kc (the average number of nodes per clique), after

which gave after a sufficient number of iterations is given by

gave = have/Kave.

5. CLIQUE-BASED DISTRIBUTED BEAMFORMER

The beamformer in Eq. (3) can be seen as a ratio of two av-

erages. Using a consensus algorithm over non-overlapping

cliques (see Section 4), it is possible to estimate these aver-

ages in distributed fashion. We refer to this distributed beam-

former as clique-based distributed beamformer (CbDB).

We assume that each node i in the AWSN for a given time

frame has the initial values Ỹi(0) = d∗i σ
−2
Vi

Yi and d̃i(0) =

d∗i σ
−2
Vi

di, where Yi is obtained by the microphone at node i.

To focus on the distributed processing, we estimate σ2
Vi

dur-

ing noise only periods and assume that the acoustic transfer

function di of each node i to be known.

After finding all non-overlapping cliques, as explained in

Sec. 3, each non-overlapping clique c in the network has the

initial values Ŷc(0) =
∑

i∈c Ỹi(0) and d̂c(0) =
∑

i∈c d̃i(0).

With the initial values Ŷc(0) and d̂c(0) per clique c ∈ VR, the

beamformer output in Eq. (3) is given by

Z = Ŷave/d̂ave, (5)

where Ŷave = 1
C

∑C

c=1 Ŷc(0) and d̂ave = 1
C

∑C

c=1 d̂c(0). To

find the average value Ŷave and d̂ave in a distributed way, the

CbDB uses the proposed DCvNC algorithm. Let Ŷ(t) be a C-

dimensional vector defined as Ŷ(t) =
[

Ŷ1(t), · · · , ŶC(t)
]T

,

similarly, all d̂c(t) are stacked in a C-dimensional vector

d̂(t). In vector form, the CbDB at iteration t is given by

Ŷ(t) = U(t)Ŷ(t− 1) (6)

d̂(t) = U(t)d̂(t− 1) (7)

Z̃i(t) = Ẑc(t) = Ŷc(t)/d̂c(t), i ∈ c, (8)

with Z̃i(t) the CbDB output of node i ∈ c at iteration t and

U(t) is a C×C-dimensional update matrix, which is selected

independently across time. Matrix U(t) is given by

U(t) = I−
1

2
(ec − el) (ec − el)

T
, (9)

where ec is a C-dimensional unit vector with the cth compo-

nent equal to 1 and I is the C-dimensional identity matrix.

6. CONVERGENCE ANALYSIS

The probabilities pcl that neighboring cliques c and l com-

municate can be stacked in a C × C-dimensional probability

matrix as p = AR

2|ER| , where AR is a C ×C symmetric matrix

with acl = 1 if (c, l) ∈ ER. The expectation of the update

matrix in GR can then be computed as [8],

E[U] = I− LR/ (2 |ER|) , (10)

where LR = DR − AR is the Laplacian matrix of graph

GR with DR = diag {|N1| , · · · , |NC |}. Since the expecta-

tion matrix E[U] is positive semidefinite doubly-stochastic,

and the graph corresponding to E [U] is connected, Ŷ(t) and

d̂(t) are guaranteed to converge to the average value Ŷave1

and d̂ave1 in expectation [5], where 1 denotes the vector of

all ones. This guarantees that the output Z̃i of the CbDB con-

verges to the optimal output Z as long as d̂ave 6= 0.

To assess the convergence rate of the CbDB, we consider

the convergence error ǫ(t) =
‖Ŷ(t)−Ŷave1‖

‖Ŷ(0)‖
, and in analogy

with [5] define the convergence time of the CbDB Tave(ξ) as

Tave(ξ) = sup
Ŷ(0)

inf
t=0,1,···

{Pr (ǫ(t) ≥ ξ) ≤ ξ} . (11)

From the definition of Tave(ξ) given in Eq. (11), the upper

and lower bounds for Tave(ξ) are given by [5]

0.5 log ξ−1

log λ2(E [U])−1
≤ Tave(ξ, E [U]) ≤

3 log ξ−1

log λ2(E [U])−1
.

(12)

Eq. (12) shows that the convergence rate of the CbDB de-

pends on the second largest eigenvalue of E [U]. The smaller

3
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the magnitude of λ2(E [U]), the faster the convergence. From

Eq. (10), λ2(E [U]) can be computed as

λ2(E [U]) = 1−
1

2 |ER|
λC−1 (LR) , (13)

with λC−1(LR) the second smallest eigenvalue of LR. Sub-

stituting Eq. (13) into Eq. (12) and using the Taylor series

expansion, the upper bound for Tave(ξ) can now be written in

terms of the eigenvalue λC−1(LR). That is

Tave(ξ,LR)=
3 log ξ−1

log
(

1− 1
2|ER|λC−1 (LR)

)−1 ≤
6 |ER| log ξ

−1

λC−1(LR)
.

(14)

From the lower bound on the eigenvalue λC−1 (LR) given in

[12], λC−1(LR) can be shown to be bounded by

4

CD(GR)
≤ λC−1 (LR), (15)

with D(GR) the diameter of graph GR. Combining Eq. (15)

with Eq. (14), Tave(ξ,GR) can be written in terms of the di-

ameter and number of cliques in the graph GR. That is

Tave(ξ,GR) ≤
3

2
CD(GR) |ER| log ξ

−1. (16)

The convergence rate of the CbDB and the DDSB can now

be compared using the upper bounds of Tave(ξ,GR) and

Tave(ξ,G), respectively. Since the DDSB is performed in

graph G and the CbDB is performed in G’s compressed graph

GR, we have C ≤ N , |ER| ≤ |E| and D(GR) ≤ D(G). In

combination with Eq. (16), it follows that Tave(ξ,GR) ≤
Tave(ξ,G). This implies that, with high probability, the

CbDB converges faster than the DDSB.

7. COMPUTER SIMULATIONS

In this section, the performance of the presented DCvNC and

CbDB is illustrated via a simulated AWSN. First, we compare

the convergence rate and robustness of the DCvNC with the

randomized gossip algorithm [5] and the cluster-based gos-

sip algorithm [8] using synthetic data. After that, the perfor-

mance of the CbDB is demonstrated on speech data.

We simulate a network of 20 nodes and 40 edges and con-

sider that each node i has the initial value X̃i,m = X + Vi,m,

where m is a realization index, X is a constant that is to be

estimated in this experiment which is degraded by indepen-

dent and identically distributed (i.i.d.) zero-mean Gaussian

variables Vi,m. To compare the DCvNC with the random-

ized gossip and the cluster-based gossip algorithm, we mea-

sure the mean convergence error (MCE) as a function of used

transmissions as,

MCE =
1

M

M
∑

m=1

∥

∥

∥
X̃m(t)−X1

∥

∥

∥
/
∥

∥

∥
X̃m(0)

∥

∥

∥
, (17)

with M = 5000 the number of realizations. Here, one trans-

mission is the sending of data from one node. The MCE

is shown in Fig. 1(a) as a function of transmissions of the

overall network. Both the proposed DCvNC and the cluster-

based gossip algorithm converge much faster than the ran-

domized gossip algorithm. Due to the centralized structure of

clusters, the cluster-based algorithm will be more sensitive to

nodes failure than the DCvNC. In order to test the robustness

of these algorithms, we repeat this experiment for the case

that one of the nodes randomly disappears and also average

this performance over M realizations. The result is shown in

Fig. 1(b), from which we see that the DCvNC is more robust

than the cluster-based gossip algorithm, since the disappear-

ing node can be a cluster head in the cluster-based algorithm.
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Clustered gossip

DCvNC

Randomized Gossip

Fig. 1. 20 nodes randomly connected with 40 edges.

Next, we again simulate an AWSN where 20 microphones

are randomly connected with 40 edges. We assume that the

20 wireless microphones, a speech source and a noise source

are randomly distributed in a 10m×10m×5m room, and each

microphone gathers noisy speech at a sampling frequency of

fs = 16 kHz. We use a 30 sec. speech signal [13] as a

speech source and a single zero-mean white Gaussian signal

as a point noise source. To demonstrate the distributed algo-

rithms, we assume that the distance li between microphone i
and the desired signal source is known, and the acoustic trans-

fer function di of each node i is determined by gain and delay

values as di = xie
−jωkτi , where xi = 1/li and τi = li

c
fs

denote the damping and delay coefficient, respectively, with

c the speech of sound. All nodes process the signals frame-

by-frame in the DFT domain with a 50%-overlapping Hann

window of 25 ms. To assess the performance, we make use

of the mean-square error (MSE) between the estimated clean

speech coefficients Ẑi(k,m) from the distributed beamform-

ers and the desired speech coefficient S, given by

MSEi =
1

MK

M
∑

m=1

K
∑

k=1

∥

∥

∥
Ẑi(k,m)− S(k,m)

∥

∥

∥

2

, (18)

with K and M the number of frequency bins and time frames,

respectively.
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Fig. 2. MSE of node 1 with −1dB input SNR versus number

of transmissions.

Fig. 2 shows the comparison in terms of MSE between the

proposed CbDB, the DDSB and the cluster-based DDSB out-

puts of node 1 and the MSE of the optimal centralized beam-

former (CB) output. Similar result are obtained for the other

nodes. The results in Fig. 2(a) show that all distributed algo-

rithms reach the same performance as the centralized beam-

former after enough transmissions, but both the CbDB and the

cluster-based DDSB converge much faster than the DDSB.

We also compare the robustness of the CbDB and the cluster-

based DDSB in the case that one microphone which served

as a cluster head in the cluster-based DDSB disappears. Fig.

2(b) shows that the CbDB has better performance and is more

robust than the cluster-based DDSB when nodes disappear,

since the cluster-based DDSB converges to a larger MSE.

8. CONCLUSIONS

To improve the convergence speed of a recent proposed dis-

tributed delay-and-sum beamformer (DDSB), we proposed

in this paper a clique-based distributed beamformer (CbDB)

for speech enhancement via non-overlapping cliques in a ran-

domly connected AWSN. Without central processor and net-

work topology constraint, the CbDB converges to the opti-

mal centralized beamformer. Furthermore, we investigate the

convergence rate of the distributed beamformers which is in-

versely proportional to the second smallest eigenvalue of the

Laplacian matrix of the graph and compare the convergence

rate of the CbDB with the DDSB. The simulation results show

that both the CbDB and the cluster-based DDSB converge

much faster than the DDSB while the robustness of the CbDB

is better than the cluster-based DDSB.
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