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ABSTRACT

MMSE estimators for DFT-domain based single-microphone speech
enhancement can broadly be classified in those that estimate the
complex-DFT coefficients and those that estimate the DFT mag-
nitudes. Existing complex-DFT MMSE estimators have generally
been derived under assumptions that are in conflict with measured
histograms and that are inconsistent with the assumptions made to
derive DFT magnitude estimators. Recently it has been shown that
these inconsistencies can be eliminated, i.e., no independency has to
be assumed between real and imaginary parts of DFT coefficients
if the phase of DFT coefficients is assumed uniformly distributed.
In this paper we discuss the assumptions that underly the different
complex-DFT estimators and show that the uniform phase assump-
tion matches actual speech data. Furthermore, we show experimen-
tally that the estimators without the independence assumption lead
to a lower mean-square error.

Index Terms— Speech enhancement, complex-DFT estimators,
independence assumption.

1. INTRODUCTION

Single-microphone DFT-based speech enhancement methods have
attracted an increased interest for improving the quality of digital
speech processing devices. These methods estimate complex-valued
clean speech DFT coefficients by processing the noisy DFT coeffi-
cients on a frame-by-frame basis. The first methods that were pro-
posed for single-microphone DFT-based speech enhancement were
based on spectral subtraction, see, e.g., [1][2]. Later, somewhat more
sophisticated methods were proposed, where minimum mean-square
error (MMSE) estimators were derived by exploiting (assumed) den-
sities of the speech and noise DFT coefficients, see, e.g., [3][4][5].
These statistical methods estimate either the complex clean speech
DFT coefficients [4][5] or their magnitude [3][5].

In [5] it was shown that all known DFT-domain MMSE estima-
tors can be derived as special cases under the generalized-Gamma
speech prior density. This holds for both the class of complex-DFT
estimators and for the class of magnitude estimators. The complex-
DFT estimators were derived by assuming that real and imaginary
parts of DFT coefficients are independent and are both distributed
as a double-sided generalized-Gamma density. DFT Magnitude es-
timators were derived by assuming that the magnitude has a single-
sided generalized-Gamma density and the phase has a uniform den-
sity. However, as already mentioned in [5], there do exist inconsis-
tencies between the densities assumed in the cartesian domain and
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in the polar domain. More specifically, the independence assump-
tion of real and imaginary parts is generally inconsistent with the
assumption of a uniform phase in the polar domain. Furthermore,
generalized-Gamma in the cartesian (polar) domain does not always
correspond to generalized-Gamma in the polar (cartesian) domain.
The uniform phase distribution seems to be the most realistic as-
sumption; measured histograms show that phase is uniform and that
real and imaginary parts of speech DFT coefficients are uncorrelated,
but not independent [5][6].

In [7] a new theoretical framework is presented that eliminates
the aforementioned inconsistencies in distributional assumptions by
adopting the uniform phase distribution and dropping the indepen-
dence assumption of real and imaginary parts. The basic assump-
tions used in this framework are that speech and noise are inde-
pendent, that the speech phase is uniformly distributed and that the
noise DFT coefficients are Gaussian distributed. In order to derive a
complex-DFT estimator using this framework it is sufficient to spec-
ify only the density for the speech DFT magnitudes, i.e., it is not
necessary to find an exact expression for the distribution of the com-
plex DFT coefficients although this expression can in some cases be
derived from the density of speech DFT magnitudes. The advan-
tages are that it is not necessary to make the independence assump-
tion of real and imaginary parts of DFT coefficients and that there
is a direct transformational relation between the assumed density of
the complex speech DFT coefficients and the density of the magni-
tude of DFT coefficients. In this paper we discuss the assumptions
of independent real and imaginary parts of DFT coefficients on the
one hand and uniform phase on the other hand. We show that the
uniform phase assumption corresponds better to actual speech data.
Further, we evaluate the new estimators with the conventional ones
in a speech enhancement setting. The results show that with the new
estimators a lower mean-square error (MSE) can be obtained.

2. NOTATION AND BASIC ASSUMPTIONS

We assume an additive noise model, i.e., Y (k, i) = X(k, i) +
N(k, i), where Y , X and N are the noisy speech, clean speech and
noise DFT coefficient, respectively, and where k is the frequency in-
dex and i the time frame index. The DFT coefficients Y , X and N
are assumed to be complex zero-mean random variables and X and
N are assumed to be independent. Although all expressions in this
paper are per time index i and frequency index k, we will leave out
these indices for notational convenience.

For the random variables in question we use the following nota-
tion in the cartesian and polar domain:

Y = YR + jYI , |Y | = RejΘ, (1)
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X = XR + jXI , |X| = AejΦ, (2)

N = NR + jNI , |N | = DejΔ, (3)

where j =
√−1 and where the subscripts R and I indicate the

real and imaginary part of a DFT coefficient. We will use uppercase
letters for random variables and the corresponding lowercase letters
for their realizations. It is assumed that the noise DFT coefficients
N have a Gaussian distribution, with independent and identically
distributed real and imaginary parts with

σ2
N = σ2

NR
+ σ2

NI
, and σ2

NR
= σ2

NI
. (4)

Further, the a priori SNR and the a posteriori SNR are defined as
ξ = σ2

X/σ2
N and ζ = |y|2/σ2

N , respectively.

3. MMSE ESTIMATION OF COMPLEX-DFT
COEFFICIENTS

3.1. Conventional Complex-DFT Estimators Assuming Indepen-
dent Real and Imaginary Parts

Conventionally, complex-DFT estimators have been derived by as-
suming that the real and imaginary parts of speech DFT coefficients
are statistically independent, e.g., [4][5]. This implies that the phase
distribution of the complex DFT coefficients is in general not uni-
form. In Section 4 we will discuss the validity of the independence
assumption. Under this assumption it follows that the MMSE esti-
mator of clean speech DFT coefficients is given by [4]

E{X|y} = E{XR|yR} + jE{XI |yI}, (5)

i.e., the MMSE estimator consists of the sum of the individual MMSE
estimators of the real and imaginary part. The conditional expecta-
tion E{XR|yR} is given by

E{XR|yR} =

∫
xR

xRfYR|xR
(yR|xR)fXR(xR)dxR∫

xR
fYR|xR

(yR|xR)fXR(xR)dxR
. (6)

Here fXR(xR) is the assumed density of the real part of speech DFT
coefficients, and the density fYR|xR

(yR|xR) is determined by the
fact that the noise DFT coefficients are assumed Gaussian distributed
and independent from the speech. This leads to

fYR|xR
(yR|xR) = (2πσ2

NR
)−

1
2 exp

(
− 1

2σ2
NR

(yR − xR)2
)

.

Similar expressions can be given for the imaginary parts.

3.2. Complex-DFT Estimators Without Assuming Independent
Real and Imaginary Parts

One of the main results in [7] is that complex-DFT estimators can
be derived without assuming independence between real and imag-
inary parts of DFT coefficients. Instead, it is assumed that clean
speech magnitude A and phase Φ are independent and that phase is
uniformly distributed. Under these assumptions the complex-DFT
estimator is given by [7]

E{X|y} =
1

r

∫ +∞
0

∫ 2π

0
a cos (φ − θ)fY |A,Φ(y|a, φ)fA(a)dφda∫ +∞

0

∫ 2π

0
fY |A,Φ(y|a, φ)fA(a)dφda

y.

(7)
Here fA(a) is the assumed density of clean speech DFT magnitudes
and fY |A,Φ(y|a, φ) is determined by the fact that the noise DFT
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Fig. 1. Contour lines of measured distributions of real and imagi-
nary parts normalized to unit variance [5]: (a) joint distribution; (b)
product of marginal distributions.

coefficients are assumed Gaussian distributed and independent from
the speech, that is

fY |A,Φ(y|a, φ) =
1

πσ2
N

exp

(
−2ar cos(φ − θ) − r2 − a2

σ2
N

)
.

An advantage is that only the magnitude distribution needs to be
specified. Both magnitude and complex-DFT estimators can then be
derived under one and the same statistical model. In other words,
in Eq. (7) it is only necessary to specify fA(a), the transformation
to fX(x) is done implicitly in Eq. (7). Moreover, the uniform phase
assumption fits better to measured speech distributions as we will see
in Section 4. It is interesting to compare the expression for E{X|y}
given in Eq. (7) with the general known expression for the MMSE
magnitude estimator E{A|r}, i.e.,

E{A|r} =

∫ +∞
0

∫ 2π

0
afY |A,Φ(y|a, φ)fA(a)dφda∫ +∞

0

∫ 2π

0
fY |A,Φ(y|a, φ)fA(a)dφda

. (8)

It then becomes clear that under the same densities the gain func-
tion for MMSE complex-DFT estimators is always smaller than the
gain function for MMSE magnitude estimators, because of the fac-
tor cos(φ − θ) in the numerator of Eq. (7). In other words, MMSE
complex-DFT estimators always apply more suppression than MMSE
magnitude DFT estimators [7]. In Section 6 we will investigate the
influence of the different assumptions on the enhancement perfor-
mance.

4. VALIDITY OF DISTRIBUTIONAL ASSUMPTIONS

In order to get insight in the validity of the distributional assumptions
that are made by using the conventional framework and by using the
new framework, histograms were measured of real and imaginary
parts of DFT coefficients. These histograms are shown in Fig. 1 and
were measured in a similar way as in [4][6], i.e., only DFT coeffi-
cients have been taken into account for which the a priori SNR, esti-
mated using the decision-directed [3] approach, was between 19 and
21 dB. The speech signals consisted of the complete TIMIT-TRAIN
database, filtered at telephone bandwidth.

Fig. 1(a) shows the measured contours for the joint distribution.
We see that the contour lines of the joint pdf of real an imaginary
parts of the speech DFT coefficients are circular. A circularly sym-
metric joint pdf means that the real and imaginary parts are uncor-
related and that the phase distribution is uniform and independent
from the magnitude distribution. Fig. 1(b) shows the contours for
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the product of the marginal distributions. This plot is different from
Fig. 1(a), and therefore, even though real and imaginary parts may
be uncorrelated, they are clearly not independent. This validates the
assumptions made in Section 3.2 and supports the theoretical frame-
work presented in [7], while it contradicts the assumptions made
in Section 3.1. In Section 6 we will show experimentally that the
uniform phase assumption also leads to better speech enhancement
performance.

5. COMPLEX-DFT ESTIMATORS UNDER THE
GENERALIZED-GAMMA DENSITY

In this section we give analytical expressions for the estimators of
Sections 3.1 and 3.2 for a general class of distributions, namely the
generalized-Gamma densities. For details on the derivation of these
estimators, see [5] and [7], respectively. For the estimator of Sec-
tion 3.1 we assume that both XR and XI follow a double-sided
generalized-Gamma density. That is, for fXR(xR) and fXI (xI) we
assume

fXR(xR) =
γβ′ν′

2Γ(ν′)
|xR|γν′−1 exp(−β′|xR|γ),

β′ > 0, γ > 0, ν′ > 0,−∞ < xR < ∞,

(9)

where Γ(·) is the Gamma function. A similar equation holds for
fXI (xI).

To derive the estimator in Eq. (7), Section 3.2, we assume that
A follows a single-sided generalized-Gamma density, that is

fA(a) =
γβν

Γ(ν)
aγν−1 exp(−βaγ),

β > 0, γ > 0, ν > 0, a ≥ 0.

(10)

We will only consider here the case γ = 2, since for this parameter
setting it is possible to show that generalized-Gamma distributed real
and imaginary parts lead to generalized-Gamma distributed magni-
tudes. This means that a direct experimental comparison is possi-
ble. This can be derived as follows: if it is assumed that XR and
XI are independent, we have that fX(X) = fXR(xR)fXI (xI),
subsequently fX(X) can be transformed to polar coordinates, i.e.,
fX(X) ⇒ fA,Φ(a, φ). By integrating out the phase φ we obtain∫

φ
fA,Φ(a, φ)dφ = fA(a), i.e., the magnitude density from Eq.

(10). The relation between ν ′ in Eq. (9) and ν in Eq. (10) is then
given by ν = 2ν′. However, notice that by assuming independent
XR and XI , the phase distribution will be in general not uniform,
which contradicts the measurements in Section 4. For other common
settings, e.g., γ = 1, the relation between Eq. (9) and Eq. (10) holds
only approximately. However, the results from Section 3.2 remain
valid for these settings and the estimator can be derived [7].

Using Eq. (9) with γ = 2 and [8, Eq. 3.462.1], the estimator in
Eq. (6) can be written as

E{XR|yR}=
2ν′σNR√
1+2ν′ξ−1

D−(2ν′+1)(y−) − D−(2ν′+1)(−y−)

D−2ν′(y−) + D−2ν′(−y−)
,

(11)
where Dν(·) is the parabolic cylinder function of order ν [9, Ch. 19]
and

y− = − yR

σNR

(
1 + 2ν′ξ−1)−1/2

. (12)

Use has been made of the relation β′ = 2ν′/σ2
X [5]. Again, a similar

expression can be derived for the imaginary part of Eq. (5).
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Fig. 2. Comparison between conventional (dotted line) and proposed
framework (solid line) in terms of DDFT. The × indicates the Wiener
filter for both cases. The signals are degraded by white noise at an
SNR of (a) 5 dB (b) 15 dB.

The estimator in Eq. (7) can be derived by inserting Eq. (10)
with γ = 2 into Eq. (7), followed by using [8, Eqs. 8.431.5, 6.643.2,
9.210.1, and 9.220.2], leading to

E{X|y} =
νξ

ν + ξ

M(ν + 1; 2; ζξ
ν+ξ

)

M(ν; 1; ζξ
ν+ξ

)
y, (13)

where M(·) is the confluent hypergeometric function [9, Ch. 13]
and where use is made of the relation β = ν/σ2

X [5]. For ν = 1,
Eq. (13) leads to the Wiener filter. An interesting observation that
can be made from Eq. (13) is that for ν � ξ the estimator becomes
almost independent of ξ.

6. EXPERIMENTAL RESULTS

In Section 4 it was shown that the uniform phase assumption matches
measured speech DFT histograms. In this section experimental re-
sults are presented to demonstrate the influence of these better as-
sumptions on the speech enhancement performance.

The speech and noise signals that we used to generate the ex-
perimental results originate from the Noizeus [10] database. We
extended this database with white noise. All signals are filtered at
telephone bandwidth and sampled at 8 kHz. The noisy time domain
signals are divided in frames of 256 samples with 50 % overlap.
For both analysis and synthesis a square root Hann window is used.
For estimation of the a priori SNR we use the decision-directed
approach [3] and for estimation of the noise variance we use the
DFT-subspace based method presented in [11].

As a first comparison we measure the performance of both com-
plex-DFT estimators using the square-error distortion measure

DDFT =
∑

(k,i)∈Q
|x(k, i) − x̂(k, i)|2, (14)

where Q is an index set that denotes the DFT bins with energy no less
than 50 dB below the maximum bin energy in the particular speech
signal. This is done to reduce the influence of noise-only regions on
the experimental results.

Fig. 2 compares Eq. (11) and Eq. (13) in terms of DDFT as a func-
tion of the ν-parameter. In these experiments ν ranges from ν = 0.1
up to ν = 1. Both estimators comprise the Wiener filter as a special
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case. This is at ν = 1 (indicated by the symbol ×). The results
are shown in Fig. 2(a) and Fig. 2(b) for speech signals degraded by
white noise at an SNR of 5 and 15 dB, respectively. We see that at
both SNRs, the distortion DDFT is reduced using the complex-DFT
estimators under the new framework. Both estimators perform best
at small values of ν, where we also get the largest improvements
with the new estimator of Eq. (13).

For further comparison of enhancement performance we follow
a similar approach as in [6] and measure speech segmental SNR as

SSNRseg =
1

|P|
∑
i∈P

10 log10

( ‖xt(i)‖2
2

‖xt(i) − x̃t(i)‖2
2

)
, (15)

where x̃t(i) is a frame of the time domain signal that is the result
of applying the gain functions to the clean speech frame. To discard
non-speech frames, an index set P is used of all clean speech frames
with energy within 50 dB of the maximum frame energy in a partic-
ular speech signal. |P| denotes the cardinality of P . Similarly, noise
segmental SNR is measured as

NSNRseg =
1

|P|
∑
i∈P

10 log10

( ‖nt(i)‖2
2

‖ñt(i)‖2
2

)
, (16)

where nt(i) is a noise frame, and ñt(i) is the residual noise frame
resulting from applying the noise suppression filter to the noise only.

Fig. 3 shows a comparison between the estimators in Eq. (11)
and Eq. (13) in terms of NSNRseg vs. SSNRseg as a function of the
ν-parameter. In addition, the NSNRseg vs. SSNRseg trade-off is
shown for the MMSE magnitude estimators that can be derived from
Eq. (8) with Eq. (10), see [5] for details on the derivation of these
estimators. The comparison is shown for speech signals degraded by
white noise and street noise at 5 dB and 15 dB SNR. The ν-values
in Fig. 3 range from ν = 0.1 (indicated by the symbol ∗) to ν = 2.

We see that estimators under the new framework, with assump-
tions in line with measurements as discussed in Section 4, lead to im-
proved speech quality in terms of SSNR, but a slightly lower NSNR.

Further, it is shown that the magnitude estimators in general lead
to a better speech quality compared to the complex-DFT estimators,
but that they lead to less noise reduction as was mentioned in Section
3.2 below Eq. (8).

7. CONCLUDING REMARKS

Existing complex-DFT estimators have generally been derived un-
der the assumption that real and imaginary parts of DFT coefficients
are independent. This assumption is in conflict with measured his-
tograms of actual speech data and is also inconsistent with the as-
sumption that the phase of DFT coefficients in the polar domain is
uniform. Recently, a framework has been proposed that eliminates
these inconsistencies. The assumptions made under this new frame-
work match better with actual speech data. We have shown that es-
timators derived using this new framework lead to improved speech
enhancement performance in terms of mean-square error.

From the website http://ict.ewi.tudelft.nl/%7Erichard a MATLAB
toolbox can be downloaded to compute and tabulate gain functions
for E{X|y} and E{A|r} under the assumption that fA(a) has a
density as in Eq. (10) with γ = 1 or γ = 2 .
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