# ir. J. Zimmerling

*PhD student*

Circuits and Systems (CAS), Department of Microelectronics

**PhD thesis** (Jul 2018): Model Reduction of Wave Equations

Promotor: Rob Remis, Paul Urbach

**Expertise:** Wavefield modeling, imaging, and inversion

**Themes:**Biomedical signal processing/wavefield imaging

### Biography

Jorn Zimmerling was a PhD student at CAS, from Nov 2014 until July 2018. He obtained the PhD degree cum laude on 2 July 2018. Prior to this, he obtained his MSc degree (cum laude) at TU Delft and went on to an internship at Schlumberger (Boston), Jul-Oct 2014. He was also selected as the best MSc student of Fac. EWI in 2014.

He is currently a postdoc at the University of Michigan.

### EE4595 Wavefield imaging

Advanced linear and nonlinear wavefield imaging and inversion methods with applications in geophysics, biomedical imaging, and optics

### Good Vibrations - Fast and Robust Wave Field Computations in Complex Structures Using Krylov Resonance Expansions

Using Krylov subspace reduction techniques to solve wave field problems in complex media (resonanting nano-scale devices and seismic exploration)

**Compressing Large-Scale Wave Propagation Models via Phase-Preconditioned Rational Krylov Subspaces**

Druskin, V.; Remis, R.; Zaslavsky, M.; Zimmerling, J.;*SIAM Multiscale Modeling and Simulation*,

Volume 16, Issue 4, pp. 1486-1518, 2018. DOI: 10.1137/17M1156848

document**Model-order reduction of electromagnetic fields in open domains**

J. Zimmerling; V. Druskin; M. Zaslavsky; R.F. Remis;*Geophysics*,

Volume 83, Issue 2, pp. WB61-WB70, 2018. DOI: 10.1190/geo2017-0507.1

document**Rational Krylov Subspaces for Wavefield Applications**

J. Zimmerling; V. Druskin; M. Zaslavsky; R. Remis;

In*SIAM Conference on Applied Linear Algebra*,

Hong Kong (China), pp. 103, May 2018.**Model Reduction of Wave Equations**

J. Zimmerling;

PhD thesis, TU Delft, Fac. EEMCS, July 2018. ISBN: 978-94-6186-927-2. DOI: 10.4233/uuid:9fa0bdd9-29b4-489c-9799-b86e07e92813

document**Projection-Based model-order reduction of large-scale Maxwell systems**

V. L. Druskin; R. F. Remis; M. Zaslavsky; J. T. Zimmerling;

In*2017 International Conference on Electromagnetics in Advanced Applications (ICEAA)*,

(Verona, Italy), pp. 385-388, September 2017. DOI: 10.1109/ICEAA.2017.8065256

document**Model order reduction of electromagnetic wave fields in open domains**

J. Zimmerling; V. Druskin; M. Zaslavsky; R. Remis} author={V. Druskin; R.F. Remis; M. Zaslavsky; J. Zimmerling;

In*Proceedings of the Sixth Int. Symp. in Three-Dimensional Electromagnetics*,

Berkeley (CA), March 2017.

document**Phase-preconditioned rational krylov subspaces for wave simulation**

J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;

In*Householder Symposium XX on Numerical Linear Algebra*,

Blacksburg (VA), pp. 384-386, June 2017.

document**Krylov subspaces for large scale wave field simulations**

R. Remis; V. Druskin; M. Zaslavsky; J. Zimmerling;

In*Icerm Workshop*,

Providence (RI), November 2017.**Stability-corrected wave functions and structure-preserving rational krylov methods for large-scale wavefield simulations on open domains**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*Householder Symposium XX on Numerical Linear Algebra*,

Blacksburg (VA), pp. 278-279, June 2017.

document**A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media**

J. Zimmerling; Lei Wei; P. Urbach; R.F. Remis;*Journal of Computational Physics*,

Volume 315, pp. 348-362, 2016. ISSN 0021-9991. DOI: 10.1016/j.jcp.2016.03.057

document**Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach**

J. Zimmerling; Lei Wei; P. Urbach; R.F. Remis;*Applied Physics A*,

Volume 122, Issue 3, pp. 158, 2016. ISSN 1432-0630. DOI: 10.1007/s00339-016-9643-4

document**Asymptotically Corrected Reduced Order Modelling for Wavefield Computation with Multiple Sources**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*78th EAGE Conference and Exhibition, Workshop 13, Methods and Challenges of Seismic Wave Modelling for Seismic Imaging*,

(Vienna, Austria), pp. WS13 C03, June 2016.**On Rational Krylov Subspace Methods for Large Scale Time and Frequency-Domain Wavefield Computations**

R. Remis; V. Druskin; M. Zaslavsky; J. Zimmerling;

In*SIAM Annual Meeting (SIAM AN16)*,

(Boston, USA), pp. 100, July 2016. (not presented).**Asymptotically Corrected Krylov Subspace Model Order Reduction of Wavefields in Travel-Time Dominated Structures**

J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;

In*SIAM Annual Meeting (SIAM AN16)*,

(Boston, USA), pp. 110, July 2016.**Efficient mode computations in open, dispersive, optical resonators**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*Bi-Annual Meeting of the European Optical Society (EOSAM 2016)*,

(Berlin, Germany), September 2016.**Phase-preconditioned Rational Krylov Subspaces for model reduction of large-scale wave propagation**

J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;

In*Numerical Linear Algebra and Applications (NL2A)*,

(Luminy, France), pp. 49, October 2016.**Krylov Model-Order Reduction of Transient Seismic Wave Propagation in Unbounded Domains**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*Book of Abstracts, SIAM Conference on Mathematical and Computational Issues in the Geosciences (SIAM GS15)*,

Stanford, Palo Alto (USA), pp. 105, June 2015.**Perfectly Matched Layers and Rational Krylov Subspaces with Adaptive Shifts for Maxwell Systems**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*Book of Abstracts, SIAM Conference on Applied Linear Algebra (SIAM LA15)*,

Atlanta (USA), pp. 80, October 2015.**Krylov Model-Order Reduction Expansions for electromagnetic Wave Fields in Strongly Resonating Structures**

J. Zimmerling; R. Remis;

In*Int. Conf. on Electromagnetics in Advanced Applications (ICEAA15)*,

Turin (Italy), pp. 23-26, September 2015. DOI: 10.1109/ICEAA.2015.7297067

document**Efficient Computation of Electromagnetic Wave Fields on Unbounded Domains Using Stability-Corrected Wave Functions and Krylov Subspace Projection Methods**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*Int. Conf. on Electromagnetics in Advanced Applications (ICEAA15)*,

Turin (Italy), pp. 19-22, September 2015. DOI: 10.1109/ICEAA.2015.7297066

document**Reduced Order Models for Large Scale Wave Propagation**

R. Remis; V. Druskin; A. Mamonov; M. Zaslavsky; J. Zimmerling;

In*12th Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2015)*,

Karlsruhe (Germany), pp. 51-52, July 2015.**Efficient Computation of the Spontaneous Decay Rate of Arbitrarily Shaped 3D Nanosized Resonators -- A Krylov Model-Order Reduction Approach**

J. Zimmerling; L. Wei; H.P. Urbach; R.F. Remis;

In*6th Conf. on Metamaterials, Photonic Crystals, and Plasmonics (META 2015)*,

New York (USA), pp. 657-662, July 2015.

## BibTeX support

Last updated: 18 Jul 2018

### Jörn Zimmerling

Alumnus- Left in 2018
- Now: postdoc, University of Michigan (USA)
- Personal webpage
- Google Scholar profile