Self-calibration for the LOFAR radio astronomical array

Alle-Jan van der Veen
Delft University of Technology
Delft, The Netherlands
Cygnus A (a quasar)
Introduction—the science

3C31 (a radio galaxy; optical and radio overlay image)
Introduction—the instruments

Karl Jansky, 1928
Introduction—the instruments

Effelsberg, Germany, 1972, 100m

Arecibo, Puerto Rico, 1960, 305m
Westerbork, Netherlands
1970, 14 dishes, 3 km

Very Large Array (VLA), New Mexico
1980, 27 dishes, 36 km
Introduction—the instruments

Atacama Large Millimeter Array, Chile, 64 dishes, est. 2011
The correlation process

Signals are stacked in vectors: $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_p(t) \end{bmatrix}$

The location of antenna i at time t is $\mathbf{r}_i(t)$.

The vector $\mathbf{r}_i(t) - \mathbf{r}_j(t)$ between antennas i and j is a baseline.
The correlation process

\[R_{k,\omega} = E\{x_\omega(t_k)x_\omega(t_k)^H}\] \approx \frac{1}{N} \sum_{nT=0}^{10s} x_\omega(t_k + nT)x_\omega(t_k + nT)^H

- Entry \((i, j)\) of \(R_{k,\omega}\) corresponds to a visibility \(V[r_i(t_k), r_j(t_k)]\) at frequency \(\omega\).
We can measure correlations only for a discrete set of baselines $r_i(t_k) - r_j(t_k)$:

(they are represented in normalized (u, v)-coordinates)
Imaging—classical beamforming

Simplified measurement equation

\[V_{ijk} = V[r_i(t_k), r_j(t_k)] = \sum_{\ell=1}^{d} I(s_{\ell}) e^{-j s_{\ell}^T (r_i - r_j)} \]

- \(I(\cdot) \) is the brightness image (‘map’) of interest
- \(s_{\ell} \) is the unit direction vector of the \(\ell \)-th source (assuming discrete source model)
- \(V_{ijk} \) is the measured correlation \((R_k)_{ij}\) between antennas \(i \) and \(j \) at time \(t_k \)

Classical Fourier-based imaging

Given many samples of \(V_{ijk} \), we can compute \(I(s_{\ell}) \) via an inverse Fourier transform:

“dirty image” : \(I_D(s) := \sum_{i,j,k} V_{ijk} e^{j s^T (r_i - r_j)} =: \sum_{\ell} I(s_{\ell}) B(s - s_{\ell}) = I \ast B \)

“dirty beam” : \(B(s - s_{\ell}) := \sum_{i,j,k} e^{j (s - s_{\ell})^T (r_i - r_j)} \)

Every point source excites a beam \(B(\cdot) \) centered at its location \(s_{\ell} \)
Imaging—the dirty image

(a) $I(l,m)$
(b) $B(l,m)$
(c) $I(l,m) \ast B(l,m)$
(d) $V(u,v)$
(e) $S(u,v)$
(f) $V(u,v)S(u,v)$
Imaging—adaptive beamforming techniques

Matrix model

- Recall

\[(R_k)_{ij} \equiv V_{ijk} = \sum_{\ell=1}^{d} I(s_\ell) e^{-j s^T_\ell (r_i - r_j)} = \sum_{\ell=1}^{d} e^{-j s^T_\ell r_i} \cdot I(s_\ell) \cdot e^{j s^T_\ell r_j}\]

- In standard array signal processing notation, we have \(R_k = A_k B A_k^H \)

 where

\[
A_k = [a_k(s_1), \ldots, a_k(s_d)], \quad B = \begin{bmatrix}
I(s_1) & 0 \\
\vdots & \ddots \\
0 & I(s_d)
\end{bmatrix}
\]

- \(a_k(s) = \begin{bmatrix}
e^{-j s^T r_1(t_k)} \\
\vdots \\
e^{-j s^T r_p(t_k)}
\end{bmatrix} \)

 is the array response vector.
Imaging—adaptive beamforming techniques

Classical imaging

\[I_D(s) = \sum_{i,j,k} V_{ijk} e^{j s^T r_i} \cdot e^{-j s^T r_j} = \sum_{i,j,k} (R_{k})_{ij}(\hat{a}_k(s))_i(a_k(s))_j = \sum_k a_k^H(s)R_k a_k(s) \]

Minimum Variance Distortionless Response (MVDR) imaging

- Pseudo-spectrum: \(I'_D(s) := \sum_k w_k^H(s)R_k w_k(s) \)

- MVDR criterium:

\[\hat{w}_k(s) = \arg\min_{w_k} w_k^H \hat{R}_k w_k \quad \text{such that} \quad w_k a_k(s) = 1 \]

- The solution to this problem is

\[\hat{w}_k = \beta_k \hat{R}_k^{-1} a_k(s), \quad \text{where} \quad \beta_k = \frac{1}{a_k^H(s) \hat{R}_k^{-1} a_k(s)} \]

\[\Rightarrow \quad I'_D(s) = \sum_{k=1}^K \frac{1}{a_k^H(s) \hat{R}_k^{-1} a_k(s)} \]
Imaging—“dirty images” from the LOFAR test station

Left: Classical beamforming; right: MVDR

Snapshot image showing Cassiopeia A along with interference at the horizon
The LOFAR design

Low Frequency Array

- 77 stations (Netherlands, Germany)
- 200 elements/station
- dense core, 3000 elements
- 20–240 MHz, resolution 1 kHz
- 8 simultaneous beams, each 4 MHz
- operational in 2007 (?)
The LOFAR design

LOFAR setup

ionosphere

interferer

station 1

beamformers

station 50

central correlator

\(r_{ij}(t, \omega) \)

(up to 80 million correlation products)
The central processor

IBM BlueGene/L

- 64k compute nodes, 180–360 TFlops
 Antennas produce 20 Tbps.
- Data is stored for 10 s, correlated, then discarded
The LOFAR design

LOFAR antenna (2 dipoles)

Initial Test Station (60 elements)
LOFAR stations

Station Configuration

![Graph: Initial Test Station (ITS) Configuration](image)
LOFAR stations

Station Beam

Station Beam Pattern
The LOFAR design

Core Station 1 (64 elements)
First image of "Core Station 1" (21 Sept 2006)

48 antennas, 57 MHz, averaging 43 subbands of 156 kHz, over 512 seconds
Ionosphere

The effect of the ionosphere

ionosphere
linear phase gradient
(time varying)

geometric delays

beamformer

\(x(t, \omega) \)

(movie of Virgo A observed by the VLA at 74 MHz)
Regime 1

- Existing telescopes at higher frequencies. Can assume 1 calibrator in beam.
- Ionosphere phases factor out, estimate only the antenna gains and noise powers.
Calibration–regime 1

- Collect telescope outputs in vector \(\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_M(t) \end{bmatrix} \), gains in \(\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_M(t) \end{bmatrix} \),

- Noise powers in \(\mathbf{D} := \mathbb{E}\{\mathbf{n}(t)\mathbf{n}(t)^H\} = \begin{bmatrix} d_1 \\ \vdots \\ d_M \end{bmatrix} \).

- Compute the sample covariance matrix \(\hat{\mathbf{R}}(t) \), with model

\[
\mathbf{R}(t) = \mathbb{E}\{\mathbf{x}(t)\mathbf{x}(t)^H\} = \mathbf{g}\mathbb{E}\{|s(t)|^2\}\mathbf{g}^H + \mathbb{E}\{\mathbf{n}(t)\mathbf{n}(t)^H\}
\]

- Source power \(\sigma_s = \mathbb{E}\{|s(t)|^2\} \) is known. Normalize to \(\sigma_s = 1 \).

\[
\mathbf{R} = \mathbf{g}\mathbf{g}^H + \mathbf{D} \quad \text{(rank-1 factor analysis model)}
\]
Regime 2

Centimeter wave observation, VLBI. Still single source. Can give defocusing.

Can assign ionospheric phases to antennas, and use the same algorithm as before for telescope gain estimation. Need algorithm for defocusing.
Regime 3

- Existing compact low frequency arrays, individual stations, or the central core of LOFAR. A LOFAR station beam $\sim 5^\circ$, sidelobe level -13 dB. Coherent image.
In regime 3, the unknown ionospheric phase is not observable in the correlations (can assign it to sources).

Instead of 1 calibrator source, several will be visible (say Q):

$$ R = G R_0 G^H + D $$

with $R_0 = K \Sigma_s K^H$ ($M \times M$ rank Q) known, K is array response due to geometry (Fourier vectors), and $G = \text{diag}(g)$: direction-indept gain. Solvable if $Q < M$.

Regime 4

Objects in field of view see different ionospheric phase and gain

Station beam field of view

Full array aperture

LOFAR station

LOFAR station

The complete LOFAR system: requires direction dependent calibration

Is this identifiable?
Direction-dependent calibration

• Each station sees a different direction dependent blur.
• Calibration on several bright point sources in the field of view is required.
Calibration–regime 4

Calibrated subarray (central core)

The LOFAR design contains a central core of 32 stations. A possible algorithm is:
- Calibrate the subarray separately (regime 3).
- Use it to sample the other station beams (correlate core with stations). This suppresses most of the other sources ⇒ single source calibration.

![Diagram showing the core and station setup with 100 m and 3 km distances]
Ongoing research

- Statistical model of the ionosphere (model error, optimal basis, tracking)
- Can we reach the required dynamic range (70 dB)?
- How do errors show up in the final image?
- RFI mitigation
Interference

LOFAR RFI situation

- Adaptive nulling (station/central), frequency notches, subtraction
- Station processing should maintain smooth behavior of beamshapes
Conclusions

Radio astronomy is an interesting application area for Array Signal Processing:

- Imaging and deconvolution
- Interference reduction using subspace techniques
- Calibration

Thanks to Sebastiaan van der Tol (TU Delft), Brian Jeffs (Brigham Young U.), and everyone at ASTRON