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Deterministic Blind Modulation-Induced Source
Separation for Digital Wireless Communications

Geert Leus, Piet Vandaele, and Marc Moonen

Abstract—In this paper, we present a new simple deterministic
blind source separation algorithm, which is based on modulating
the same data symbol sequence with different code sequences
and transmitting the resulting modulated data symbol sequences
through different antennas. The algorithm does not exploit the
finite alphabet property of the data symbols. As a result, no itera-
tions are required, and convergence is not an issue. Instantaneous
mixtures (frequency-flat fading), as well as convolutive mixtures
(frequency-selective fading), can be handled. In the case of a
convolutive mixture, the difficulties that occur when the users
have unequal channel orders are avoided. Moreover, the proposed
algorithm is robust against channel order underestimation.

Index Terms—Blind source separation, communications, convo-
lutive mixtures, instantaneous mixtures, transmit diversity.

I. INTRODUCTION

T HE BLIND separation of different digital signals, of which
only an instantaneous (frequency-flat fading) or convolu-

tive (frequency-selective fading) mixture is observed, is consid-
ered here. Compared withstochasticblind algorithms,deter-
ministicblind algorithms can be applied on much smaller blocks
of received samples. Therefore, we will focus ondeterministic
blind source separation in this work.

For an instantaneous mixture, several deterministic blind
source separation algorithms have already been presented. A
well-known iterative algorithm that exploits the finite alphabet
property of the digital signals is the iterative least squares
algorithm with projection (ILSP) [1]. However, this algorithm
does not necessarily converge to the global minimum. Hence,
to find the actual global minimum, the ILSP algorithm requires
several random initializations or an initialization based on a
noniterative algorithm (see below). Another iterative algo-
rithm that exploits the finite alphabet property of the digital
signals is the hypercube algorithm [2]. This algorithm, which
sequentially estimates each signal, is less complex than the
ILSP algorithm. However, like the ILSP algorithm, it does
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not necessarily converge to the global minimum. Interesting
noniterative algorithms are the analytical constant modulus
algorithm (ACMA) [3] for constant modulus constellations and
the real analytical constant modulus algorithm (RACMA) [4]
and the algorithm presented in [5] for a BPSK constellation.
Although near-optimum, these approaches are computationally
expensive. Finally, a simple recursive noniterative algorithm
for a BPSK constellation can be found in [6].

In addition, for aconvolutive mixture, some deterministic
blind source separation algorithms have already been pre-
sented. Extensions of the ILSP algorithm [1] and the hypercube
algorithm [2] to convolutive mixtures can be found in [7] and
[8], respectively. In addition, the subspace intersection (SSI)
algorithms presented in [9] and [10] are very popular. When
the users have equal channel orders, these algorithms consist
of two steps. First, the convolutive mixture is transformed
into an instantaneous mixture using a direct blind symbol
estimation approach (only an instantaneous mixture of the
digital signals is identified). Note, however, that this can also
be done by using a blind channel estimation approach (only an
instantaneous mixture of the channels is identified) followed
by a channel inversion, as mentioned in [9] (see [11] and
[12] for an extensive treatment of deterministic blind channel
estimation in a multiuser system). Next, one of the above algo-
rithms for instantaneous mixtures is used. When the users have
unequal channel orders, difficulties occur, and a cumbersome
iterative procedure is required. The major drawback of the
SSI algorithms presented in [9] and [10] is that they are rather
sensitive to channel order mismatch.

In this paper, we show that by modulating the same data
symbol sequence with different code sequences and transmit-
ting the resulting modulated data symbol sequences through
different antennas, we can develop a new simple deterministic
blind source separation algorithm. This algorithm does not ex-
ploit the finite alphabet property of the data symbols. As a re-
sult, no iterations are required, and convergence is not an issue.
Instantaneous mixtures (frequency-flat fading), as well as con-
volutive mixtures (frequency-selective fading), can be handled.
In the case of a convolutive mixture, the difficulties that occur
when the users have unequal channel orders are avoided. More-
over, the proposed algorithm is robust against channel order un-
derestimation.

The idea of modulating a data symbol sequence with a code
sequence is not new. In [13] and [14], it is used to get rid of the
identifiability conditions for second-order blind channel estima-
tion in a single-user system. We use it, on the other hand, to solve
the source separation problem. Moreover, the algorithms pre-
sented in [13] and [14] are stochastic, whereas the algorithm we

1053–587X/01$10.00 © 2001 IEEE



220 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

Fig. 1. Multiuser system based on code modulation.

develop is deterministic. Of course, there also exist other types
of coding that do not decrease the information rate. In [15], for
example, correlative coding is used to solve the source separa-
tion problem. However, this algorithm is rather complex and,
like the algorithms presented in [13] and [14], it is stochastic.

In Section II, we introduce the data model. In Section III, we
then state the source separation problem under consideration.
The proposed deterministic blind source separation algorithm
is presented in Section IV. Simulation results are given in Sec-
tion V. We end with some conclusions in Section VI.

II. DATA MODEL

We first introduce some basic notation. We use lower-case
boldface letters to denote vectors and upper-case boldface letters
to denote matrices. In addition

transpose;
Hermitian transpose;
absolute value;
Frobenius norm.

Let us then consider a system of users and (base sta-
tion) receive antennas, where each user is transmitting through

transmit antennas (see Fig. 1). At theth transmit antenna
( ), the th user ( ) modulates
his data symbol sequence (with data symbols in some fi-
nite alphabet ) with the code sequence , leading to the
following modulated data symbol sequence:1

(1)

To avoid introducing (additional) modulus variations, we as-
sume that the code sequences are constant
modulus with modulus 1:

for

and (2)

1In the DS-CDMA jargon, this means that we use a spreading factor of 1.

The modulated data symbol sequence is then transmitted
through the th transmit antenna at the data symbol rate ,
where is the data symbol period. Next, if we sample the
receive antennas at the data symbol rate, the received se-
quence at the th receive antenna ( ) is given
by

where is the discrete-time additive noise at theth re-
ceive antenna, and is the discrete-time channel from the
th transmit antenna of theth user to the th receive antenna,

including the transmit and receive filters. Stacking the received
samples from the receive antennas

we obtain

where is similarly defined as , and is the dis-
crete-time vector channel for theth transmit antenna of
the th user, which is given by

Remark 1: Note that a similar data model is obtained if the
spatial oversampling under consideration is replaced by or com-
bined with temporal oversampling, i.e., sampling at a multiple
of the data symbol rate. Hence, the results presented in this paper
can easily be generalized for such a scenario.

We make the assumption that every vector channel from the
set is an FIR vector filter of the same order
with the same delay index ( for and

, and for and ). Although
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this is not strictly necessary, it simplifies the description of the
proposed algorithm. We further assume w.l.o.g. that 0 for

.
For a burst length of ( , , , and
are the data symbols of interest for theth user), the matrix

that plays a central role in the next sections is the following
output matrix:

...
...

...

where determines the amount of temporal smoothing. This
output matrix can be written as

(3)

where is similarly defined as , is the
( ) channel matrix for theth transmit antenna
of the th user, which is given by

...

and is the input matrix for the th transmit an-
tenna of the th user, which is shown in (4) at the bottom of the
page. Note that (3) can also be written as

(5)

where is the ( ) channel matrix,
which is given by

and is the input matrix, which is given by

(6)

III. PROBLEM STATEMENT

For a burst length of ( , , , and
are the data symbols of interest for theth user), let us define

(7)

Using (1), we then know that given by

can be written as a function of , shown in (8) at the bottom
of the page, where is the code matrix for the th
transmit antenna of theth user, which is given by

... (9)

From (4) and (6), it is then clear that every vector from the set
is a row of every input matrix from the set

and is therefore “contained” in every output matrix

from the set [see (5)]. The problem addressed here
is to compute the vector from the set with

(10)

based only on the knowledge of the set of code sequences
. Note that we define as the number of output

matrices taken into account ( ), which means
that

To solve this problem, we make the following rather standard
assumptions.

Assumption 1:The channel matrix has full column rank
( is then called the system order).

Assumption 2:Every input matrix from the set
has full row rank .

Note that Assumption 1 is equivalent with the assumption that
the FIR matrix filter

is irreducibleandcolumn reduced(see [11]) and that

...
...

... (4)

(8)
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The latter indicates that we should use . Assumption
2 requires that

IV. DETERMINISTIC BLIND SOURCESEPARATION ALGORITHM

Before discussing the proposed deterministic blind source
separation algorithm in detail, we explain the main idea by
means of a simple example.

Example 1: We consider an instantaneous mixture ( 2
and 0), 6 receive antennas and 2 transmit
antennas per user and take 0 (temporal smoothing has no
use for an instantaneous mixture). Hence, we can only examine

0 for every user. Focusing on the first user, the
problem under consideration then is to compute the vector

from based only on the knowledge of the set of code se-
quences . If we assume no additive noise is
present, can be written as

...
...

...

The key observation then is that if we multiply to the right
with, respectively, and [see (9)], the intersection of
the row spaces of the obtained matrices contains the vector.
In other words, we have

row

where row represents the row space. This may uniquely de-
termine (up to a complex scaling factor).

We now discuss the proposed deterministic blind source sep-
aration algorithm in detail. For the sake of clarity, let us first
assume that no additive noise is present. Calculating the sin-
gular value decomposition (SVD) [16] of (

) leads to

where is a diagonal matrix (diagonal elements in descending
order) of the same size as , and and are square unitary
matrices. Because of Assumptions 1 and 2,has rank , and

row row

Defining the matrix as the collection of the first
columns of and the matrix as the collection

of the last columns of , we can then write that

row row row row
(11)

where represents the orthogonal complement. Since
( ) is a row of , we obtain

row row (12)

Because and [this is due to (2)],
(12) can be rewritten as

row row

This can be derived for every( ) and for every
( ). All these results can then be

combined, leading to

row

row (13)

A vector that satisfies (13) can be found by computing the
left singular vector of corresponding to the smallest
singular value (which is equal to 0) or, equivalently (see [9,
Appendix A]), by computing the left singular vector of
corresponding to the largest singular value (which is equal to

), where is the matrix given by

(14)

is the matrix given by

...

...

.. .

(15)

and is the matrix given by

...

...

...

(16)

Let us then introduce the following assumption.
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Assumption 3:For any vector in linearly indepen-
dent of , there exists an input matrix with
and a code matrix with such that

has full row rank .
Using this assumption, we have the following identifiability

result.
Theorem 1: Under Assumptions 1 and 2, we can state that

(13) uniquely determines (up to a complex scaling factor) if
and only if Assumption 3 is satisfied.

Proof: Under Assumptions 1 and 2, we know thatsat-
isfies (13). We now prove that Assumption 3 is a necessary and
sufficient condition for to be uniquely determined by (13) (up
to a complex scaling factor).

We first prove that Assumption 3 is a necessary condition.
Suppose that there exists a vectorin linearly indepen-
dent of such that

has a rank lower than for ,
and (due to Assumption 2, the rank will then
actually be ). From (11), it is then clear that

row row

for and

This means that (13) is also satisfied for.
We then prove that Assumption 3 is a sufficient condition.

Suppose that there exists a vectorin linearly indepen-
dent of such that (13) is also satisfied for. This means that

row row

for and

From (11), it is then clear that

has a rank lower than for and
(due to Assumption 2, the rank will then actually

be ). This concludes the proof.
Assumption 3 is satisfied if there exists an input matrix

with such that

...

has a one-dimensional (1-D) left null space or, equivalently, has
rank . For random complex or real code sequences
and random complex or real data symbol sequences, this is the
case with probability 1 if

which indicates that 2 should be used. To support this
claim, it is shown in the next remark that Assumption 3 is most
likely not satisfied for 1.

Remark 2: Let us take 1 and focus on the first user. If
we assume that , with , we know that

is a row of every input matrix from the set .
This means that if we take , is also
a row of every input matrix from the set (because

). If we further assume that is
independent from , we further know that is independent
from . Hence, Assumption 3 is then not satisfied, irrespective
of and , with .

Note that robustness against channel order underestimation is
obtained by the fact that Assumption 3 can very well be satisfied
for .

Let us then assume additive noise is present. Calculating the
SVD of ( ) then leads to

where is a diagonal matrix (diagonal elements in descending
order) of the same size as and and are square uni-
tary matrices. For an estimateof the system order, let us
then define the matrix as the collection of
the last columns of and the matrix as
the collection of the first columns of . In correspondence
with the noiseless case, we then compute the left singular vector
of corresponding to the smallest singular value (noise-
subspace version of the proposed algorithm) or, equivalently
(see [9, Appendix A]), we then compute the left singular vector
of corresponding to the largest singular value (signal-
subspace version of the proposed algorithm), whereis the

matrix, which is defined in a similar
fashion as [see (15)] using instead of , and is
the matrix, which is defined in a similar fashion
as [see (16)] using instead of . Note that if ,
the noise-subspace version is less complex than the signal-sub-
space version, whereas if , it is the other way around.
The proposed deterministic blind source separation algorithm
is summarized in Table I. The corresponding parameter restric-
tions are summarized in Table II.

A. Further Discussion

1) The effect of the additive noise on and can be
computed using the first order perturbation analysis [17].
The result can be used to derive a statistically optimal
weighting matrix. However, as demonstrated in [18] in a
somewhat different context, applying this weighting ma-
trix should be avoided.

2) When we take equal to the number of rows of
( ), we can calculate or from a
QR decomposition (QRD) [16] of . This results in a
significant complexity reduction.

3) Following a similar approach as in [19], where a
single-user system without coding is considered, and
[20], where a multiuser DS-CDMA system is considered,
it is also possible to derive a direct blind equalizer
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TABLE I
DETERMINISTIC BLIND SOURCESEPARATION ALGORITHM

TABLE II
PARAMETER RESTRICTIONS

estimation algorithm that is related to the proposed direct
blind symbol estimation algorithm.

4) Instead of working with the SVDs [or QRDs if
] of the output matrices from the set

, we could also follow the approach presented
in [9] and [10] and work with the SVD [or QRD if

] of the output
matrix

...
...

...

where is an estimate of the minimal channel order
smaller than or equal to ( ). How-

ever, when calculating the SVD [or QRD if
] of one output matrix from the set and

calculating the SVDs [or QRDs if ] of the
other output matrices from that set using an adaptive SVD
algorithm [or adaptive QRD algorithm if ],
there is not much difference in complexity between the
approach we follow and the approach presented in [9] and
[10]. Moreover, the approach we follow lends itself better
to a possible adaptive implementation (see the next point).

5) The noise-subspace version of the proposed algorithm
can also be implemented in an adaptive way using an

RLS scheme. We therefore refer to [20], where a sim-
ilar problem is discussed in the context of a multiuser
DS-CDMA system. To exploit the finite alphabet prop-
erty of the data symbols, [20] also describes a Viterbi
algorithm, which can easily be adapted for the multiuser
system under consideration. Note that an interesting
Viterbi algorithm for a multiuser system employing
linear block coding is introduced in [21] (see also [22]).

B. Modifications for a Real Constellation

When the data symbols belong to a real constellation, the re-
alness of the constellation can be exploited. When no coding is
used, this is usually done by splitting the received sequence in
its real and imaginary part, hence doubling the number of obser-
vations prior to any other operation (see [1], [4], [9], and [23]).
Here, we use a somewhat different approach.

When the data symbols belong to a real constellation and we
assume no additive noise is present, we can rewrite (13) as

row

row

(17)

A vector that satisfies (17) can be found by computing the left
singular vector of

corresponding to the smallest singular value (which is equal to
0) or, equivalently (see [9, App. A]), by computing the left
singular vector of

corresponding to the largest singular value (which is equal to
).

Let us then introduce the following assumption.
Assumption 4:For any vector in linearly indepen-

dent of , there exists an input matrix with
and a code matrix with such that

has full row rank .
Using this assumption, we have the following identifiability

result.
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Theorem 2: Under Assumptions 1 and 2, we can state that
(17) uniquely determines (up to a real scaling factor) if and
only if Assumption 4 is satisfied.

Proof: The proof is similar as the proof of Theorem 1.
Assumption 4 is satisfied if there exists an input matrix

with such that

...
...

. . .
. . .

has a 1-D left null space or, equivalently, has rank
. For random complex code sequences and random real data

symbol sequences, this is the case with probability 1 if

which indicates that any can now be used.
Note that robustness against channel order underestimation is

obtained by the fact that Assumption 4 can very well be satisfied
for .

V. SIMULATION RESULTS

We assume that the data symbol sequences are
mutually independent and zero-mean white with variance 1. We
further assume that the additive noises are mutu-
ally independent and zero-mean white Gaussian with variance

. For simplicity, we also assume that

for

and

Using (2), the signal-to-noise ratio (SNR) for every user at the
input of the receiver can then be defined as

SNR

For all simulations, we will conduct 2000 trials, using bursts of
100 data symbols.

A. Convolutive Single-User System

In this subsection, we perform some simulations on a con-
volutive single-user system ( 1 and 4). We consider
BPSK modulation, 4 receive antennas, and 1 transmit
antenna and take 1. We examine two scenarios.

1) and .
2) and .

The condition number of is 6.8907.
We first assume that is a random complex code se-

quence and apply the proposed algorithm. To exploit the real-
ness of the constellation, we use the modifications discussed in
Section IV-B. We only consider 6.

Fig. 2. BER as a function of the SNR for two different algorithms (convolutive
single-user system, BPSK modulation, one transmit antenna).

We next assume that (no coding) and apply the
SSI algorithm presented in [19] (note that this SSI algorithm
is slightly different from the SSI algorithms presented in [9]
and [10]). To exploit the realness of the constellation, we split
the received sequence in its real and imaginary part. We only
consider 6.

Note that considering 6 actually means that we know
that 4 (since we take 1). Hence, scenario 2 maybe
seems somewhat artificial. However, the conclusions we draw
from the simulations (see next paragraph) also hold when we
consider 6, in which case, scenario 2 does make sense.

Fig. 2 shows the BER as a function of the SNR for the two
algorithms. First of all, we see that if we use the correct channel
order, the performance of the proposed algorithm is much better
than the performance of the SSI algorithm presented in [19].
Next, we observe that if we underestimate the channel order,
the proposed algorithm still works, whereas the SSI algorithm
presented in [19] does not.

B. Instantaneous Mixture

In this subsection, we perform some simulations on an in-
stantaneous mixture ( 4 and 0).
We consider BPSK modulation, 6 receive antennas, and

1 transmit antenna per user and take 0 (temporal
smoothing has no use for an instantaneous mixture). Hence, we
can only examine 0 for every user. The condition
number of is 2.9238.

We first assume that , , , and are
random complex code sequences and apply the proposed al-
gorithm. To exploit the realness of the constellation, we use
the modifications discussed in Section IV-B. We only consider

4.
We next assume that

1 (no coding) and apply the ILSP algorithm [1] and the RACMA
algorithm [4]. To exploit the realness of the constellation, we
split the received sequence in its real and imaginary part. For
the ILSP algorithm, we consider different numbers of random
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Fig. 3. Average BER per user as a function of the SNR for three different
algorithms (instantaneous mixture, BPSK modulation, one transmit antenna per
user).

initializations (one, two, and three random initializations). For
the RACMA algorithm, we only consider 4.

Fig. 3 shows the average BER per user as a function of the
SNR for the three algorithms. We observe that the performance
of the ILSP algorithm strongly depends on the number of
random initializations. We also see that for a small number of
random initializations and a high SNR, the ILSP algorithm may
not find the global minimum. The good performance of the
ILSP algorithm (for a large number of random initializations
and a low SNR) and the RACMA algorithm can be explained by
the fact that these two algorithms jointly detect all transmitted
data symbol sequences and that they exploit the finite alphabet
property of the data symbols. Although the proposed algorithm
does not have these properties, its performance is fairly close
to the performance of the ILSP algorithm (for a large number
of random initializations and a low SNR) and the RACMA
algorithm.

C. Convolutive Mixture

Finally, we perform some simulations on a convolutive mix-
ture ( 2, 4 and 2).

We first consider BPSK modulation, 4 receive antennas,
and 1 transmit antenna per user and take 4. We ex-
amine three scenarios.

1) and for the first user and
and for the second user.

2) and for every user.
3) and for every user.

The condition number of is 12.6795. We assume that
and are random complex code sequences and apply the
proposed algorithm. To exploit the realness of the constellation,
we use the modifications discussed in Section IV-B. We con-
sider two values of .

1) .
2) .

Fig. 4. Average BER per user as a function of the SNR (convolutive mixture,
BPSK modulation, one transmit antenna per user).

Fig. 4 shows the average BER per user as a function of the SNR
for this setup.

We next consider QPSK modulation, receive an-
tennas, and transmit antennas per user and take .
We examine three scenarios.

1) and for the first user and
and for the second user.

2) and for every user.
3) and for every user.

The condition number of is 15.1524. We assume that
, , , and are random complex code

sequences and apply the proposed algorithm. We consider two
values of .

1) .
2) .

Fig. 5 shows the average BER per user as a function of the SNR
for this setup.

We again observe that the proposed algorithm is robust
against channel order underestimation. Moreover, we see that
it is also fairly robust against system order overestimation.

VI. CONCLUSIONS

We have presented a new simple deterministic blind source
separation algorithm, which is based on modulating the same
data symbol sequence with different code sequences and trans-
mitting the resulting modulated data symbol sequences through
different antennas. The algorithm does not exploit the finite al-
phabet property of the data symbols. As a result, no iterations are
required, and convergence is not an issue. Instantaneous mix-
tures (frequency-flat fading), as well as convolutive mixtures
(frequency-selective fading), can be handled. In the case of a
convolutive mixture, the difficulties that occur when the users
have unequal channel orders are avoided. Moreover, the pro-
posed algorithm is robust against channel order underestima-
tion.
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Fig. 5. Average BER per user as a function of the SNR (convolutive mixture,
QPSK modulation, two transmit antennas per user).
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